
Sentilo Documentation
Release 1.9.0

Sentilo

Dec 14, 2020

Contents

1 Setup 3

2 Quickstart 13

3 API Docs 15

4 Architecture 75

5 Integrations 83

6 Catalog and Maps 95

7 Multi Tenant 141

8 Tutorials 153

9 Technical FAQ 185

10 Platform Testing 187

11 Use a Virtual Machine 191

i

ii

Sentilo Documentation, Release 1.9.0

Contents:

Contents 1

Sentilo Documentation, Release 1.9.0

2 Contents

CHAPTER 1

Setup

This guide describes how to: download, configure, compile and install the last version of Sentilo in your own run-
time environment. Moreover, it details which are the infrastructure elements necessary for running Sentilo and how
should be their default configuration settings. It’s assumed you have the skills to configure and install the necessary
software base(Operating System, Maven,JDK, Mongo DB, Redis, etc).

The main topics are:

• Prerequisites: describes the software elements that have to be installed before download the code.

• Download and build: explains the steps to obtain the Sentilo code, to adapt it and how to build the platform
artifacts.

• Platform infrastructure: describes the mandatory infrastructure components for running Sentilo and its default
configuration settings.

• Deploy the artifacts: describes the necessary steps to deploy all the Sentilo modules

1.1 Prerequisites

Sentilo uses Maven as a mechanism for building and managing the dependencies of the platform. In order to build
Sentilo, it is necessary to ensure the next set of prerequisites:

• JDK 1.8.x +

• Git (optional)

• Maven 3 +

• Ensure that the the Java SDK and Maven executables are accessible using your PATH environment variable.

3

Sentilo Documentation, Release 1.9.0

1.2 Download and build code

The Sentilo code must be downloaded from Github. Once downloaded, you can build it using a script named build-
Sentilo.sh which constructs the Sentilo artifacts “out-of-the-box”.

1.2.1 Download the source code from Github

The source code of the project can be obtained from git, cloning the remote project in a local directory named sentilo:

git clone https://github.com/sentilo/sentilo.git sentilo

An alternative method is to download a ZIP file from github repository and decompress it in a folder named sentilo:

https://github.com/sentilo/sentilo/archive/master.zip

In both cases, we will finally have a new directory named sentilo with the source code.

1.3 Compiling and build artifacts

1.3.1 Without changing the default configuration

If you want to build Sentilo out-of-the-box (i.e. build all artifacts that define the Sentilo platform without changing
any of the default settings that are defined), we distribute a script named ./scripts/buildSentilo.sh which can be used to
build Sentilo from the command line.

This script compiles the code and build the artifacts from scratch, but it doesn’t deploy them in the execution environ-
ments. This process must be done manually by different reasons, for example:

• The deployment environment could be distributed in different servers. In example, Tomcat server and
Pub/Subscribe server.

• it’s not required to install all the components, like the relational database agent.

1.3.2 Changing default settings

If you want modify the code before to build it, you should import it into an Eclipse workspace with maven plug-in
installed. Below we explain how to do it by using the M2E plugin.

• Open the Eclipse workspace to import the code:

– Go to File> Import> Existing Maven Projects

– Select ./sentilo as the root directory

– Select all projects and import

Warning: be sure that JDK 1.8, or later, is correctly configured in your Eclipse environment.

After modifying the code, to compile and build the artifacts, our recommendation is to use the above mentioned*
buildSentilo* script.

4 Chapter 1. Setup

https://github.com/sentilo/sentilo/archive/master.zip

Sentilo Documentation, Release 1.9.0

1.4 Platform infrastructure

Before describing how to install all the Sentilo components, we’re going to explain how to configure each element of
the infrastructure.

Sentilo uses the following infrastructure elements (they are grouped into two categories):

• Mandatory

– Redis 4.0.11

– MongoDB 4.0.1

– Tomcat 8.5.32 +

• Optional

– MySQL 5.5.x (Sentilo has been tested on MySQL 5.5.34 but you could use your favourite RDBMS) It is
only necessary if you want to install the relational agent

– Elasticsearch 5+ It is only necessary if you want to install the activity-monitor agent.

– openTSDB 2.2.0 + It is only necessary if you want to install the historian agent

You must ensure that you have all these elements installed properly (you can find information on how to install them
in each provider site).

Below we explain the default settings for each Sentilo module.

1.4.1 Default settings

Sentilo configuration uses the Spring and Maven profiles to allow its customization depending on the runtime envi-
ronment. By default, the platform comes with a predefined profile named dev, which considers that each of these
infrastructure elements are installed on the same machine and listening in the following ports:

• Redis: 6379

• MongoDB: 27017

• Tomcat: 8080

• MySQL: 3306

• Elasticsearch: 9200

• openTSDB: 4242

All these settings can be found in the subdirectory /src/main/resources/properties of each platform’s
module.

1.4.2 Redis settings

Sentilo default settings consider Redis will be listening on port 6379, host 127.0.0.1, and with the parameter re-
quirepass enabled and with value sentilo.

If you change this behaviour, you need to modify the following properties:

jedis.pool.host=127.0.0.1
jedis.pool.port=6379
jedis.pool.password=sentilo

1.4. Platform infrastructure 5

http://redis.io/commands/AUTH
http://redis.io/commands/AUTH

Sentilo Documentation, Release 1.9.0

which are configured in the following files:

sentilo-platform/sentilo-platform-service/src/main/resources/properties/jedis-config.
→˓properties
sentilo-agent-alert/src/main/resources/properties/jedis-config.properties
sentilo-agent-relational/src/main/resources/properties/jedis-config.properties
sentilo-agent-location-updater/src/main/resources/properties/jedis-config.properties

1.4.3 MongoDB settings

Sentilo default settings consider MongoDB will be listening on 127.0.0.1:27017, and requires an existing database
named sentilo, created before starting the platform, with authentication enabled and with login credentials preconfig-
ured as sentilo/sentilo (username~:sentilo, password~:sentilo).

If you change this behaviour, you need to modify following properties:

catalog.mongodb.host=127.0.0.1
catalog.mongodb.port=27017
catalog.mongodb.user=sentilo
catalog.mongodb.password=sentilo

configured in the following files:

sentilo-agent-alert/src/main/resources/properties/catalog-config.properties
sentilo-catalog-web/src/main/resources/properties/catalog-config.properties

Data load

Moreover, you need to load on sentilo database the basic set of data needed to run the platform. The data include,
among other things:

• An user admin: user for log in into the catalog webapp as administrator.

• An user sadmin: user for log in into the catalog webapp with role super-admin.

• A default sentilo tenant: used to configure the default viewer parameters (center, zoom, . . .) from the catalog
web app.

• An entity sentilo-catalog: internal app used by the platform to synchronize information between its components.

• An user platform_user: internal user used by the platform to synchronize information between its components.

To do this, you must load the data defined in the file:

./scripts/mongodb/init_data.js

For example, in your MongoDB machine, you should execute the following command from the directory where the
file is located:

mongo -u sentilo -p sentilo sentilo init_data.js

Note: The file init_data.js contains default passwords and tokens (which are ok for run Sentilo in a test environment).
In order to avoid compromising your platform, we recommend to change them before installing Sentilo in a production
environment.

6 Chapter 1. Setup

http://docs.mongodb.org/v4.0/core/access-control/

Sentilo Documentation, Release 1.9.0

If you change default values in the /sentilo/scripts/mongodb/init_data.js file and load them to Mon-
goDB, you will have to modify the following properties before compiling and building Sentilo. So, following JS code
from init_data.js :

Corresponds with:

rest.client.identity.
→˓key=c956c302086a042dd0426b4e62652273e05a6ce74d0b77f8b5602e0811025066
catalog.rest.credentials=platform_user:sentilo

, being rest.client.identity.key the token of a sentilo-catalog application, and catalog.rest.credentials value is a combi-
nation of user platform_user and it’s password.

These properties are in following files:

sentilo-agent-alert/src/main/resources/properties/platform-client-config.properties
sentilo-catalog-web/src/main/resources/properties/catalog-config.properties
sentilo-platform/sentilo-platform-service/src/main/resources/properties/integration.
→˓properties

Test data load

In order to validate the correct installation of the platform, we could load a set of test data. These data includes, among
other things: sensor types, component types, apps and providers.

These data is defined in the file:

./scripts/mongodb/init_test_data.js

and, as pointed above, you should run the following command to load it:

mongo -u sentilo -p sentilo sentilo init_test_data.js

1.4.4 MySQL settings

Note: This software is mandatory only if you want to export the published events to a relational database using the
Relational Database Agent. Otherwise, you can skip this step. Please, check this out for more info.

Sentilo default settings consider MySQL server will be listening on 127.0.0.1:3306, and requires an existing database
named sentilo, created before starting the platform, with authentication enabled and accessible using credentials sen-
tilo_user/sentilo_pwd (username~:sentilo_user, password~:sentilo_pwd).

If you change this behaviour, you need to modify the following properties:

sentiloDs.jdbc.driverClassName=com.mysql.jdbc.Driver
sentiloDs.url=jdbc:mysql://127.0.0.1:3306/sentilo
sentiloDs.username=sentilo_user
sentiloDs.password=sentilo_pwd

configured in the file:

sentilo-agent-relational/src/main/resources/properties/relational-config.properties

1.4. Platform infrastructure 7

./integrations.html#relational-database-agent

Sentilo Documentation, Release 1.9.0

Creating the tables

Once we have MySQL configured, and the database sentilo created, the next step is to create the database tables
required to persist historical platform data.

At the following directory of your Sentilo installation:

sentilo-agent-relational/src/main/resources/bd

you’ll find the script to create these tables.

1.4.5 Tomcat settings

Sentilo default settings consider Tomcat will be listening on 127.0.0.1:8080.

If you change this behaviour, you need to modify the following property:

catalog.rest.endpoint=http://127.0.0.1:8080/sentilo-catalog-web/

configured in the following files:

sentilo-platform/sentilo-platform-service/src/main/resources/properties/integration.
→˓properties
sentilo-agent-location-updater/src/main/resources/properties/integration.properties

Your Tomcat should also be started with the user timezone environment variable set as UTC. To set Timezone in
Tomcat, the startup script (e.g. catalina.sh or setup.sh) must be modified to include the following code:

-Duser.timezone=UTC

1.4.6 API server (Subscription/publication) settings

Sentilo default settings consider subscription/publication server (a.k.a. PubSub server) will be listening on
127.0.0.1:8081

If you change this behaviour, you need to modify the following properties:

port=8081
rest.client.host=http://127.0.0.1:8081

configured in the following files:

sentilo-platform/sentilo-platform-server/src/main/resources/properties/config.
→˓properties
sentilo-catalog-web/src/main/resources/properties/catalog-config.properties

1.4.7 Configuring logs

Sentilo uses slf4j and logback as trace frameworks. The configuration can be found in logback.xml file, located in
the subdirectory src/main/resources of sentilo-common module of the platform.

By default, all platform logs are stored in the directory /var/log/sentilo

8 Chapter 1. Setup

Sentilo Documentation, Release 1.9.0

1.5 Platform installation

Once you have downloaded the code and you have modify, compile and built it, the next step is to deploy Sentilo
artifacts. The platform has five artifacts:

• Web Application Catalog (is mandatory)

• Server publication and subscription (is mandatory)

• Alarms agent is not strictly mandatory, however you’ll need it if you want to provide alerts.

• Location updater agent is not strictly mandatory, however you’ll need it if you want to update locations in case
you have mobile components.

• All other agents (are optional):

1.5.1 Installing the Web App Catalog

After build Sentilo, to install the Web App, you just need to deploy the WAR artifact in your Tomcat server, i.e., copy
the WAR artifact into the webapps subdirectory of your Tomcat server.

You will find the WAR artifact at the following subdirectory:

./sentilo-catalog-web/target/sentilo-catalog-web.war

1.5.2 Installing API server (subscription/publication)

After build Sentilo, to install the API (pub/sub) server, you need to follow the following steps:

a. Into the directory ./sentilo-platform/sentilo-platform-server/target/appassembler you’ll find two subdirectories
named repo and bin:

• repo directory contains all libraries needed to run the process

• bin directory contains the script (sentilo-server) needed to initialize the process (there are two scripts, one for
Linux systems and one for Windows)

b. Copy these two directories in the root directory where you want to install this component (for example:
/opt/sentilo-server).

c. Once copied, for starting the process you just need to run the script:

$sentilo-server/bin/sentilo-server

1.5.3 Installing agents

As have been mentioned previously, all agents are optional and you are free to choose which of them will be deployed,
depending on your specific needs. Agents are internal modules oriented to expand the platform functionality without
having to alter its core. You will find more information about them in the Integrations section of our documentation.

The buildSentilo script builds also all agents. If you decide to install some of them, you just have to copy the contents
of the appassembler directory to the path you want the agent to be installed.

For example, Alert agent would be installed like this:

a. In the directory ./sentilo-agent-alert/target/appassembler you’ll find two subdirectories named repo and bin:

• repo directory contains all libraries needed to run the process

1.5. Platform installation 9

./integrations.html#agents

Sentilo Documentation, Release 1.9.0

• bin directory contains the script (sentilo-agent-alert-server) needed to initialize the process (there are two
scripts, one for Linux systems and one for Windows)

b. Copy these two directories in the root directory where you want to install this component (for example:
/opt/sentilo-agent-alert).

c. Once copied, for starting the process you just need to run the following script:

<path-to-agent-alert>/bin/sentilo-agent-alert-server

All other agents follow the exact same directory structure.

Note: The configuration of the agents has to be done before compilation and is documented in their respective page

1.6 Enable multi-tenant instance

In order to enable multi-tenant feature you need to ensure that your Sentilo version is at least 1.5.0. Otherwise you
will have to upgrade your Sentilo instance.

Once the above requirement is fulfilled, you only need to do the following steps:

1.6.1 Modify your Tomcat startup script

You should modify your Tomcat startup script (e.g %TOMCAT_HOME%/bin/catalina.sh or %TOM-
CAT_HOME%/bin/setenv.sh) to add a new JVM property:

-Dsentilo.multitenant=true

Once you have added the JVM property, you must restart your Tomcat server.

1.6.2 Edit the Catalog web.xml file

The next step is to edit the Catalog file web.xml located at:

sentilo-catalog-web/src/main/webapp/WEB-INF/web.xml

You will find some lines that are commented into this file which are needed to enable the multi-tenant feature. There-
fore you should uncomment them:

<!--
<filter>

<filter-name>UrlRewriteFilter</filter-name>
<filter-class>org.tuckey.web.filters.urlrewrite.UrlRewriteFilter</filter-

→˓class>
<init-param>

<param-name>logLevel</param-name>
<param-value>slf4j</param-value>

</init-param>
</filter>

<filter>

(continues on next page)

10 Chapter 1. Setup

./integrations.html#agents
https://github.com/sentilo/sentilo/wiki/How-to-upgrade-Sentilo

Sentilo Documentation, Release 1.9.0

(continued from previous page)

<filter-name>tenantInterceptorFilter</filter-name>
<filter-class>org.sentilo.web.catalog.web.TenantInterceptorFilter</filter-

→˓class>
</filter>

-->

<!--
<filter-mapping>

<filter-name>tenantInterceptorFilter</filter-name>
<url-pattern>/*</url-pattern>
<dispatcher>REQUEST</dispatcher>

</filter-mapping>
<filter-mapping>

<filter-name>UrlRewriteFilter</filter-name>
<url-pattern>/*</url-pattern>
<dispatcher>REQUEST</dispatcher>
<dispatcher>FORWARD</dispatcher>

</filter-mapping>
-->

Once you have uncomment the above lines, you should recompile the Catalog webapp module and redeploy it into
your Tomcat server.

You will find more information about this feature in the Multi-Tenant section of our documentation.

1.7 Enable anonymous access to REST API

By default, anonymous access to REST API is disabled, e.g. all requests to REST API must be identified with the
identity_key header.

Enabling anonymous access to the REST API means that only authorized data of your Sentilo instance can be accessed.
Access to authorized data is described below.

In order to enable anonymous access you should modify the file sentilo-platform/sentilo-platform-
server/src/main/resources/properties/config.properties:

Properties to configure the anonymous access to Sentilo
enableAnonymousAccess=false
anonymousAppClientId=

If anonymous access is enabled (enableAnonymousAccess=true), then all anonymous requests to REST API are in-
ternally considered as is they have been performed by the application client identified by the anonymousAppClientId
property value (this application client should exist into your Sentilo Catalog), and therefore these requests will have
the same data restrictions as the requests performed by this client application.

1.8 What next?

Check the Quick Start Page or Platform Testing page.

1.7. Enable anonymous access to REST API 11

./multitenant.html
./api_docs/security.html
./quickstart.html
./platform_testing.html

Sentilo Documentation, Release 1.9.0

12 Chapter 1. Setup

CHAPTER 2

Quickstart

2.1 Perquisites

You should have 4 components up & running: - Redis Server - MongoDB - Sentilo API, running at http://127.0.0.1:
8081 - Sentilo Catalog, running at http://127.0.0.1:8080/sentilo-catalog-web

The installation covered by the section Sentilo Setup. (No need to setup any agents or other optional components such
as Elasticsearch or OpenTSDB). Alternatively, you can use our VM.

2.2 Create a Provider, Component and a Sensor

In order to create a publication of sensor data, we have to create first the Provider, Component and a Sensor.

We’ll do that from the catalog application as superuser, using the admin/1234 credentials.

A provider is an entity that manages devices (sensors). We’ll have to create one from the menu “Providers” -> “New
Provider”

A component is a device that contains one or more sensors (such as a Raspberry PI). We’ll have to create one from the
menu “Components” -> “New Component”. Make sure you select the provider created above.

Finally, we’ll have to create a sensor from the menu “Sensors” -> “New Sensor”. Make sure you select the component
created above. Please select a numeric type of sensor.

2.3 Publish an Observation

In order to publish an observation, we’ll use Sentilo’s HTTP REST API. For that you can use the curl program of some
more graphical tool such as Postman:

curl -X PUT -H "IDENTITY_KEY: <your provider's token>" http://<your sentilo url>/data/
→˓<your provider>/<your sensor>/42.0

13

http://127.0.0.1:8081
http://127.0.0.1:8081
http://127.0.0.1:8080/sentilo-catalog-web
./setup.html
./use_a_virtual_machine.html
https://getpostman.com

Sentilo Documentation, Release 1.9.0

The server should respond with HTTP status 200.

2.4 Read your Observations

curl -X GET -H "IDENTITY_KEY: <YOUR_KEY>" http://<your sentilo url>/data/<your
→˓provider>/<your sensor>

The response would be similar to:

{
"observations": [
{

"value": "42.0",
"timestamp": "22/11/2016T11:52:28",
"location": ""

}
]

}

Also, on the “Latest Data” tab of the sensor’s page in the catalog will appear your value, in this case, a 42.0.

2.5 What next?

Check the API documentation here.

14 Chapter 2. Quickstart

./api_docs.html

CHAPTER 3

API Docs

Contents:

3.1 General Model

3.1.1 Intro

Sentilo offers an open source API based on REST interfaces.

Representational State Transfer (REST) is a style of architecture that exploits existing technologies and protocols of
the World Wide Web (WWW).

The communication from external elements with Sentilo will be through HTTP protocol (Hypertext Transfer Protocol).

Here, briefly describes the concepts of REST terminology that Sentilo will use:

• Resources: Elements of the information system.

• Identifiers: Unique name that identifies a resource within the system.

• Representations: Format of the exchanged data.

• Operations: Actions that can be performed on a resource.

• Response codes: Result of the operation.

3.1.2 Resources

Resources, or pieces of information of Sentilo Platform, are:

• Sensor: item of hardware or software with the ability to generate an observation(data).

• Component: corresponding to a element of hardware or software, with geospatial location (fixed or mobile)
who could be composed by 1 or more Sensors.

15

Sentilo Documentation, Release 1.9.0

• Provider: entity that represents a grup of components and allows them to communicate with Sentilo for sending
data and receive commands.

• Client application / Module: entity that consumes the data processed by the platform.

The actions that can be carried out are:

• Applications / Modules

– Register on the platform, but always from the administration console.

– Send orders to providers/sensors (order service).

– Receive data from provider/sensors (data service).

– Subscribe to system events (subscribe service).

• Providers / Sensors

– Register on the platform (catalog service).

– Subscribe to system events (subscribe service).

– Publish data (data service).

Sensors and components have always a an associated typology.

3.1.3 Identifier

Unique name that identifies a resource in the system.

In the case of Sentilo, it is an URLs (Uniform Resource Locator).

The base URL is composed as follows:

protocol://domain:port/service

and consists of the following parts:

• communication protocols: HTTP or HTTPS.

• domain: Platform server API domain (e.g. localhost).

• port: Port defined for communications with the server API (e.g. 8081).

• service: catalog, data, order, etc..

Every service has a custom URL format as specified for each services.

3.1.4 Representations

Data formats that will supports the platform is currently only JSON.

Example data in JSON format:

{"observations":[
{"value":"12.3","timestamp":"17/09/2012T12:34:45"}

]}

16 Chapter 3. API Docs

Sentilo Documentation, Release 1.9.0

3.1.5 Operators

The platform operators are the HTTP protocol methods.

In general, the operation associated with the operations used by Sentilo are:

• GET: Request information.

• POST: Send new data.

• PUT: Update existing data.

• DELETE: Erase data.

The platform discriminates the action you want perform from the method used and by the service, provider or
sensor specified in the URL invoked.

3.1.6 Response

The response to a request to the platform is managed through the response HTTP status codes.

Error Code HTTP Description
200 Success Request accepted and processed correctly
4xx Client Error Error in request (Wrong format, forbidden mandatory parameters, . . .)
401 Unauthorized Unauthorized request: empty or invalid credential
403 Forbidden Not authorized for the requested action
404 Not Found The requested entity does not exist
429 Too Many Requests Global quota or entity quota exceed
5xx Server Error Error processing the request

In case of error the response body will include a description of the problem detected, as shown in the following
examples:

This payload is returned when no credential is sent:

{"code":401,"message":"Invalid credential null"}

This payload is returned when JSON payload could not be read as JSON:

{
"code":400,
"message":"SIE03-1398350628224 Bad request data: could not read JSON payload.

→˓Please review the following error and try again",
"errorDetails": ["org.sentilo.common.exception.MessageNotReadableException:

→˓Unexpected character ('o' (code 111)):"]
}

3.2 Security

3.2.1 Securing API requests

The platform will validate any request received by the system following the terminology AAA (Authentication, Au-
thorization, Accounting):

• Authentication: Identifying who is doing the request.

3.2. Security 17

Sentilo Documentation, Release 1.9.0

• Authorization: Validating that the action requested on the resource associated can be done.

• Traceability: Auditing the action and who has performed it.

So, for each request received, the platform performs the following actions:

• Identify the petitioner through the header HTTP.

• Check that it can do the requested action on the resource indicated.

• Register the performed action.

Note: Sentilo itself does not provide a mechanism to SSL/TLS http protocol (inbound https requests). That’s because
we don’t need to duplicate the work of others - Sentilo is typically deployed behind a reverse proxy or an API manager,
which already handle the encrypted connections very well.

Authentication

To identify the petitioner, the platform uses an authentication mechanism based on tokens (Token Based Authentica-
tion).

It’s necessary to establish a distribution mechanism outside the platform for send the tokens among the different users
of the platforms securely. Future versions of Sentilo will include this feature.

The token will be included in the request by adding a header with key IDENTITY_KEY.

An example of a service request (GET in this case) using the curl tool:

curl --request GET --header "IDENTITY_KEY: <YOUR_KEY>" http://<your_api_server.com>/
→˓resource

In case of incorrect or invalid token , the platform will respond with an error code 401.

Authorization

To validate the requested action on the resource indicated in the request can be performed, the platform uses a permit
system that checks authorized entity (provider or application) is allowed to admin, write or read in a resource.

These permissions are defined via the catalog console of the platform and, by default, every entity can be administrated
by its owner.

If an action on a resource is done without the appropriate permission, platform will return an error 403.

3.2.2 Securing Callbacks

If it’s necessary to secure the push requests sent by the platform, Sentilo provides a HMAC mechanism for the call-
backs.

This mechanism guarantees that:

• the message was sent by the platform

• the message was not altered after being sent

• it was rend to a specific endpoint of the subscription

18 Chapter 3. API Docs

http://en.wikipedia.org/wiki/Hash-based_message_authentication_code

Sentilo Documentation, Release 1.9.0

How does it work?

The data flow is the following:

0. Prerequisite: A Subscription is created via API with a secretCallbackKey. You may subscribe to any
event type.

1. The data/alarm/command event is generated. How the event is created and by which entity is irrelevant.

2. If there is a Subscription with a secretCallbackKey for this event, the message will be signed and headers
X-Sentilo-Content-Hmac and X-Sentilo-Date will be created.

3. The external system receives the subscription and may check its authenticity using a same
secretCallbackKey.

The system uses the SHA-512 algorithm. It accepts keys of any size, and produces a hash sequence of length 512 bits.

The target system should activate the security for callbacks when creates the subscription specifying the secret key
(see more). This subscription

should be done using HTTPs protocol to avoid compromising the key.

After the subscription has been created, all the related requests will include two new headers, one with the hash
(X-Sentilo-Content-Hmac) and another with the timestamp (X-Sentilo-Date), as the following sample
shows:

X-Sentilo-Content-Hmac:
j1OQ+fU667GQoHYHWzLBpigRjLJmRvYn53KHZhApTbrcphYWBlRPSBHkntODuqsqx11Vj8rsc7DDziiutTq/
→˓5g==
X-Sentilo-Date: 10/06/2019T15:27:22

The responsibility of validating the headers will be always in the target system who is receiving the messages.

Code Samples

A simple NodeJS example that would check the authenticity of the message would be:

const crypto = require('crypto');

const message = '{"message":"26","timestamp":"03/12/2020T07:36:27","topic":"/data/
→˓TITAN/TITAN-S01","type":"DATA","sensor":"TITAN-S01","provider":"TITAN","time
→˓":1606980987614,"publisher":"TITAN","publishedAt":1606980987614,"publisherTenant":"
→˓","tenant":"","sender":"TITAN"}'
const endpoint = 'http://my.endpoint.com:1880/sentilo';
const secretKey = 'my_super_secret_key';
const headerXSentiloDate = '03/12/2020T07:36:27';
const headerXSentiloContentHmacValue = 'elMiy5BDgDB68UVMonNDCc/BH8YrLWtCP6CdvlB4T//
→˓uI87JmMvx+epPUDy8E3Rg4UC2Bm21n4Zj/CLxOEcEZA==';

// Step 1 - hash the message and finally base64
let md5body = crypto.createHash('md5').update(message).digest('base64');

// Step 2 - concatenate all the necessary values
let values = ['POST', md5body, 'application/json', headerXSentiloDate, endpoint];
let contentToSign = values.join('\n');

// Step 3 - HMAC and and finally base64

(continues on next page)

3.2. Security 19

./services/subscription/subscription.html
http://en.wikipedia.org/wiki/SHA-2
./services/subscription/subscription.html

Sentilo Documentation, Release 1.9.0

(continued from previous page)

let hmac = crypto.createHmac('sha512', secretKey);
hmac.update(contentToSign);
let result = hmac.digest('base64')

// Finally compare with the X-Sentilo-Content-Hmac header
console.log(result == headerXSentiloContentHmacValue);

Alternatively, another validation example in Java:

import javax.crypto.Mac;

import org.apache.commons.codec.binary.Base64;
import org.apache.commons.codec.digest.DigestUtils;
import org.apache.commons.codec.digest.HmacAlgorithms;
import org.apache.commons.codec.digest.HmacUtils;

public class HmacHeaderExample {

public static void main(final String[] args) {

// incoming message
final String body =

"{\"message\":\"26\",\"timestamp\":\"03/12/2020T07:36:27\",\"topic\":\"/data/
→˓TITAN/TITAN-S01\",\"type\":\"DATA\",\"sensor\":\"TITAN-S01\",\"provider\":\"TITAN\",
→˓\"time\":1606980987614,\"publisher\":\"TITAN\",\"publishedAt\":1606980987614,\
→˓"publisherTenant\":\"\",\"tenant\":\"\",\"sender\":\"TITAN\"}";

// You're on this endpoint
final String endpoint = "http://my.endpoint.com:1880/sentilo";
// Same secret key as the secretCallbackKey in the subscription
final String secretKey = "my_super_secret_key";
// Value of X-Sentilo-Date
final String headerXSentiloDate = "03/12/2020T07:36:27";
// Value of X-Sentilo-Content-Hmac
final String headerXSentiloContentHmacValue = "elMiy5BDgDB68UVMonNDCc/

→˓BH8YrLWtCP6CdvlB4T//uI87JmMvx+epPUDy8E3Rg4UC2Bm21n4Zj/CLxOEcEZA==";

// Step 1 - hash the message and finally base64
final byte[] md5BodyDigest = DigestUtils.md5(body);
final String md5Body = new String(Base64.encodeBase64(md5BodyDigest));
// Result expected: cIQCRRWeo0yQQLS8rlOtLQ==

// Step 2 - concatenate all the necessary values
final String[] values = {"POST", md5Body, "application/json",

→˓headerXSentiloDate, endpoint};
final String contentToSign = String.join("\n", values);
// Result expected
// POST
// cIQCRRWeo0yQQLS8rlOtLQ==
// application/json
// 03/12/2020T07:36:27
// http://my.endpoint.com:1880/sentilo

// Step 3 - HMAC and and finally base64
final Mac mac = HmacUtils.getInitializedMac(HmacAlgorithms.HMAC_SHA_512,

→˓secretKey.getBytes()); (continues on next page)

20 Chapter 3. API Docs

Sentilo Documentation, Release 1.9.0

(continued from previous page)

final byte[] rawHmac = mac.doFinal(contentToSign.getBytes());
final String signature = new String(Base64.encodeBase64(rawHmac));

// Finally compare with the X-Sentilo-Content-Hmac header
System.out.println(signature.equals(headerXSentiloContentHmacValue));

}
}

3.3 Rate Limiting

Since v1.9, Sentilo offers rate limiting features for the REST API.

Rate limiting prevents the Sentilo instance from request flooding. Also, protects external systems that are sub-
scribed to Sentilo by limiting outcoming requests.

3.3.1 Setting global limits

You can set global incoming quota api.global_rate_limit.quota in file sentilo-platform/
sentilo-platform-server/src/main/resources/properties/config.properties. If left un-
set or set to 0, Sentilo won’t apply any global limit.

The maximum body length can also be set globally with api.body.max_length property.

number of requests per hour
api.global_rate_limit.quota=100

Maximum body length in bytes
api.body.max_length=4096

If global rate limiting is set, every response of the API contains following headers:

Header Description
X-RateLimit-Global-
Inbound-Limit

Value of the api.global_rate_limit.quota property

X-RateLimit-Global-
Inbound-Remaining

Number of remaining requests until the current limit per hour is exceed

X-RateLimit-Global-
Inbound-Reset

If the API limit is exceeded, this value indicates the number of minutes until the
server will accept requests again. Otherwise is 0.

In case the global rate limit is exceed, the server will reject the request and return a HTTP error code 429.

In case the maximum payload size is exceed, the server responses with HTTP error code 400.

3.3.2 Limit requests by entity

A provider or an application can have particular limits, which can be configured in catalogue:

3.3. Rate Limiting 21

Sentilo Documentation, Release 1.9.0

If input quota for a entity is different from 0, every response of the API contains following headers:

Header Description
X-RateLimit-Inbound-
Limit

Value of the input quota

X-RateLimit-Inbound-
Remaining

Number of remaining requests until the current limit per hour is exceed

X-RateLimit-Inbound-
Reset

If the entity quota is exceeded, this value indicates the number of minutes until entity
will be permitted again. Otherwise is 0.

If output quota for a entity is different from 0, every subscription request that Sentilo sends to the subscription endpoint
will contain following headers:

22 Chapter 3. API Docs

Sentilo Documentation, Release 1.9.0

Header Description
X-RateLimit-
Outbound-Limit

Value of the output quota

X-RateLimit-
Outbound-Remaining

Number of remaining requests until the current limit per hour is exceed

X-RateLimit-
Outbound-Reset

This value indicates the number of minutes until the counter of remaining outgoing re-
quests of the entity will be reset. Otherwise is 0.

For example, consider that the subscribed system receives a message, together with these headers:

• X-RateLimit-Outbound-Limit: 5

• X-RateLimit-Outbound-Remaining: 1

• X-RateLimit-Outbound-Reset: 58

We can see that this entity that is subscribed to Sentilo data has a output quota set to 5 notifications/hour, that it can
still receive 1 more notification and that the current window is still valid during next 58 minutes.

As with the global limit,if the entity’s input quota is exceed, the server will reject the request and return a HTTP error
code 429. Global rate limit is prevalent to entity’s quota, so the request is rejected when the lowest of the two is met.

3.4 Monitor API (Beta)

Since v1.9, Sentilo offers an internal Monitor API that enables direct access to select real-time information of the API
server and other components. With this internal API you can also remotely restart API server, for example in case the
main API is too busy.

The Monitor API runs on a different port then public API. The default port number is 7081 and is
configured in /sentilo/sentilo-platform/sentilo-platform-server/src/main/resources/
properties/config.properties by property monitor.port:

monitor.port=7081

This API currently works with the Catalog Application token. You can find the catalog token in the Application section
of the Catalog.

Note: The catalog application token is very sensitive information, since it is used for admin operations. Make sure
you do store it in a private repository. Also make sure calls to the monitoring API are encrypted. See more in the
Security section

List of API resources in the monitoring API:

Resource Method Description
/monitor/ping GET Simple service that responds with http code 200 if the server is up and run-

ning.
/moni-
tor/rl_input_status

GET Returns values of global rate limiting (incoming requests), for the last hour.

/monitor/metrics GET Returns a list of components with their metrics
/monitor/restart POST Gracefully restarts the API server. No body needed.
/monitor/force-restart POST Forces a restart of the API server. No body needed.

3.4. Monitor API (Beta) 23

./services/security.html

Sentilo Documentation, Release 1.9.0

3.5 Services

Index of different services.

3.5.1 Alarm

Publish Alarm

Description

This action allows you to publish an alarm related with an alert. Once the system receives the alarm, persists it and
sends the notification to all who are subscribed to alarms alert.

http://<your_api_server.com>/alarm/<alert_id>

Formats json
Method PUT
Permission Writing
Return No additional data is returned

Parameters

Each alarm will have its own associated information structure defined in the generic format (JSON).

The platform only persists and transfers the information to recipients without interpreting its contents.

Key Description Optional
message Free field Not

Response data

This actions does not return additional data beyond the HTTP status code associated with each request to the platform.

Examples

Post a new alarm associated with an alert

The following example shows how to send a request to the platform in order to publish a new alarm associated to an
alert with identifier 43:

http://<your_api_server.com>/alarm/43

and like body message:

{"message":"Threshold limit exceeded: 32"}

Please note the following:\

24 Chapter 3. API Docs

../../general_model.html#reply

Sentilo Documentation, Release 1.9.0

• (% style=“font-size: 16px; background-color: rgb(245, 245, 245);” %)If the alert is in offline state, the server
rejects the publication.

Retrieve alarms

Description

This action allows to retrieve the latest alarms related with an alert. In addition, the service can also specify search
criterias to retrieve alarms: filter by a given time period and/or indicate the maximum number of alarms to be retrieved.

http://<your_api_server.com>/alarm/<alarm_id>?<parameter>=<value>

Format json
Method GET
Permission Reading
Return Alarms associated with the alert

Parameters

Key Description Optional
from Indicates the starting of the time period for which you want to retrieve alarms. Yes
to Indicates the end of the time period for which you want to retrieve alarms.. Yes
limit Specifies the maximum number of alarms to recover. Yes

Please note the following:

• The maximum number of records returned is defined in the platform configuration. If the limit parameter has a
higher value than the configured one it will be dismissed.

• If limit parameter is not specified, it returns only one alarm.

• All dates must follow the format: dd/MM/yyyyTHH:mm:ss

Response data

In addition to the appropriate HTTP status code, if the operation runs properly, it will return the last alarms associated
with the alert according to your search criteria.

Key Description Optional
alarms Alarms list (message) of the alert Not

Each alarm (message) will be composed by the following attributes:

Key Description Opcional
message Message recorded when the alarm was fired No
timestamp The time in which system received the alarm (format dd/MM/yyyyTHH:mm:ss) No
time The time when the observation was made in milliseconds No
sender Identifier of the entity that issued the alarm No

3.5. Services 25

../../general_model.html#reply

Sentilo Documentation, Release 1.9.0

Examples

Retrieve the last alarm

To retrieve the latest alarm for the alert with ID 43 we do the following request to the platform:

http://<your_api_server.com>/alarm/43

In the response we will receive:

{ "alarms":[
{

"message":"threshold exceeded",
"timestamp":"08/04/2013T09:44:01",
"time":1510561800008,
"sender":"appDemo"

}
]}

Recover N alarms

To retrieve the last 3 alarms for the alert with id 43 we do the following request to the platform:

http://<your_api_server.com>/alarm/43?limit=3

In the response we will receive:

{"alarms":[
{

"message":"threshold exceeded: 34",
"timestamp":"08/04/2013T09:44:01",
"time":1510561800000,
"sender":"appDemo"

},
{

"message":"threshold exceeded: 37",
"timestamp":"08/04/2013T09:14:01",
"time":1510561800001,
"sender":"appDemo"

},
{

"message":"threshold exceeded: 38",
"timestamp":"07/04/2013T23:23:10",
"time":1510561800002,
"sender":"appDemo"

}
]}

Retrieve N alarms in a given period

If we want to retrieve the alarms according to a given period of time we should do the following request:

http://<your_api_server.com>/alarm/43?limit=3&from=08/04/2013T00:00:00&to=08/04/
→˓2013T23:59:59

26 Chapter 3. API Docs

Sentilo Documentation, Release 1.9.0

In response the we will receive:

{"alarms":[
{

"message":"threshold exceeded: 34",
"timestamp":"08/04/2013T09:44:01",
"time":1510561800000,
"sender":"appDemo"

},
{

"message":"threshold exceeded: 37",
"timestamp":"08/04/2013T09:14:01",
"time":1510561800000,
"sender":"appDemo"

}
]}

Description

The alarm service allows you to record and retrieve alarms associated with an alert stored in the system catalog.

All requests for this service will have the following format:

http://<your_api_server.com>/alarm/<id_alert>

where id_alert identifies the alert for which you want to perform the action. The alert always should be defined before
throwing the alarm using the Catalog or the through the Alert service.

Actions

The available actions for this service are:

• Publish a new alarm associated with an alert

• Retrieve the latest alarms associated with an alert

3.5.2 Alert

Create Alerts

Description

This action allows to register one or more new alerts in the catalog.

http://<your_api_server.com>/catalog/alert/<entity_id>

Formats json
Method POST
Permission Writing
Returns No output data

The internal alerts should be defined through the catalog console or by the API, but only using the catalog token.

3.5. Services 27

./services/alert/alert.html
./publish_alarm.html
./retrieve_alarms.html

Sentilo Documentation, Release 1.9.0

Parameters

Key Description Optional
alerts Alerts list (alert) to register Not

Every alert element has the following structure:

Key Description Optional
id Alert ID to register No
name Alert name Yes
description Alert description Yes
type Alert type No
trigger Trigger type Mandatory for internal, not applies for externals
expression Expression to evaluate with the trigger Mandatory for internal, not applies for externals
component ID of the component to which the sensor belongs Mandatory for internal, not applies for externals
sensor ID of the sensor to which the alert applies Mandatory for internal, not applies for externals
entity Related entity identifier associated with the alert Yes

Please, note the following observations:

• The ID must identify an univocal alert, e.g., 2 alerts may not have the same ID.

• The ID must have only alphanumeric (i.e. letters and numbers) and dashes characters, with no embedded spaces.

• The list of trigger’s types and expressions are defined by the platform: Trigger types.

• The possible values for the alert types are: INTERNAL or EXTERNAL.

• Entity parameter is not mandatory, if empty the alert will be associated with the entity specified in the URL

Response data

This action doesn’t return additional data beyond the HTTP status code.

Examples

Adding one external alert

If rec entity wants to register a new custom external alert with REC_ALERT_001 identifier, to monitorize that maxi-
mum daily values for sensor REC_001 ranged from 60 and 80, the request will be:

http://<your_api_server.com>/catalog/alert/rec

and in the body message:

{"alerts":[
{"id":"REC_ALERT_001",
"name":"REC_ALERT_001",
"description":"Custom alert to monitorize that maximum daily values for sensor

→˓REC_001 ranged from 60 and 80",
"type":"EXTERNAL"

}
]}

28 Chapter 3. API Docs

../alert/alert.html
../../general_model.html#reply

Sentilo Documentation, Release 1.9.0

This request will register a new external alert with ID REC_ALERT_001 and associated to rec entity (i.e. rec entity is
who will publish alarms associated to this alert).

Note: External alerts are defined by third party entities(providers or applications), which will be the responsibles of
calculating their logic and throw the related alarms when applies.

Adding one internal alert

If we want to register a new internal alert with ID REC_GT_45_ALERT_001, to monitorize that values for sensor’s
rec REC_001 are greater than 45, the request to do is the following:

http://<your_api_server.com>/catalog/alert/rec

and in the body message:

{"alerts":[
{"id":"REC_GT_45_ALERT_001",
"name":"REC_GT_45_ALERT_001",
"description":"Internal alert to monitorize that values for sensor's rec REC_001

→˓are greater than 45",
"type":"INTERNAL",
"trigger":"GT",
"expression":"45",
"component":"REC_COMP_001",
"sensor":"REC_001"

}
]}

This request will register a new internal alert with REC_GT_45_ALERT_001 identifier and associated to REC_001
sensor which will publish an alarm when sensor value will be greater than 45.

This operation must be done using the catalog token.

Update Alerts

Description

This action allows to update one or more alerts in the catalog.

http://<your_api_server.com>/catalog/alert/<entity_id>

Formats json
Method PUT
Permission Writing
Returns No output data

The internal alerts should be updated through the catalog console or by the API, but only using the catalog token.

3.5. Services 29

Sentilo Documentation, Release 1.9.0

Parameters

Key Description Optional
alerts Alerts list (alert) to update Not

Every alert element has the following structure:

Key Description Optional
id Alert identifier to update No
name New alert name Yes
description New alert description Yes
type Alert type No
trigger New trigger type Mandatory for internal, not applies for externals
expression New expression to evaluate with the trigger Mandatory for internal, not applies for externals

Please, note the following observations:

• The list of trigger’s types and expressions are defined in: Trigger types.

• The possible values for the alert type are: INTERNAL or EXTERNAL.

Response data

This action doesn’t return additional data beyond the HTTP status code.

Examples

Update one external alert

If rec entity wants to update the external alert with REC_ALERT_001 identifier to modify its name, the request to do
will be:

http://<your_api_server.com>/catalog/alert/rec

and in the body message:

{"alerts":[
{"id":"REC_ALERT_001",
"name":"REC_EXTERNAL_ALERT_001",
"type":"EXTERNAL"

}
]}

This request will update the external alert with REC_ALERT_001 identifier updating its name to
REC_EXTERNAL_ALERT_001.

Note: External alerts are defined by third party entities(providers or applications), which will be the responsibles of
calculating their logic and throw the related alarms when applies.

30 Chapter 3. API Docs

../alert/alert.html#InternalTriggerTypes
../../general_model.html#reply

Sentilo Documentation, Release 1.9.0

Update one internal alert

If we want to update the internal alert with REC_GT_45_ALERT_001 identifier to change its description, the request
will be:

http://<your_api_server.com>/catalog/alert/rec

and in the body message:

{"alerts":[
{"id":"REC_GT_45_ALERT_001",
"type":"INTERNAL",
"description":"New description"

}
]}

This request will update the description of the internal alert with REC_GT_45_ALERT_001 identifier changing its
value to “New description”.

This operation must be done using the catalog token.

Retrieve Authorized Alerts

Description

This action returns the list of alerts for which the entity_id could do a subscription, i.e., alerts that belongs to entity_id
or alerts for which entity_id has read permission over its owner. In addition, the service also allows you to specify
search criteria to filter alerts to be retrieved: filter by alert type and / or filter by trigger type.

http://<your_api_server.com>/catalog/alert/<entity_id>?<parameter>=<value>

The entity_id is optional and can be an Application or a Provider.

Format json
Method GET
Permission Reading
Return List of authorized alerts

Parameters

Key Description Optional
type Alert’s type filter Yes
trigger Trigger’s type filter Yes

Please, note the following observations:

• The list of trigger’s types available are defined by the platform: Trigger types.

• The possible values for the alert type is also defined by the platform and are: INTERNAL, EXTERNAL.

3.5. Services 31

../alert/alert.html#InternalTriggerTypes

Sentilo Documentation, Release 1.9.0

Response data

As commented before, this action, in addition to the HTTP status code, returns the list of alerts for which entity_id has
at least read permission.

Key Description Optional
alerts Alerts list (alert) Not

Every alert element has the following structure:

Key Description Optional
id Alert ID No
name Alert name Yes
description Alert description Yes
entity Related entity No
type Alert type No
trigger Trigger type No, but only returned for internal alerts
expression Expression to evaluate with the trigger No, but only returned for internal alerts
component Component identifier to which the sensor belongs No, but only returned for internal alerts
sensor Sensor identifier to which the alert applies No, but only returned for internal alerts

Examples

Request to retrieve all the authorized alerts

The following request shows an example to retrieve all the authorized alerts for rec entity:

http://<your_api_server.com>/catalog/alert/rec

and the response will be:

{
"alerts" : [
{

"id" : "REC_ALERT_001",
"name" : "REC_ALERT_001",
"description" : "Custom alert to monitorize that maximum daily values for

→˓sensor REC_001 ranged from 60 and 80",
"entity" : "SAMCLA",
"type" : "EXTERNAL"

},
{

"id" : "REC_ALERT_002",
"name" : "REC_ALERT_002",
"description" : "Internal alert to check if S00020114-0 value is greater than 45

→˓",
"entity" : "SAMCLA",
"type" : "INTERNAL",
"trigger" : "GT",
"expression" : "45",
"component" : "S00020114",
"sensor" : "S00020114-0"

(continues on next page)

32 Chapter 3. API Docs

../../general_model.html#reply

Sentilo Documentation, Release 1.9.0

(continued from previous page)

}
]

}

Request to retrieve all the authorized alerts filtered by type and trigger

The following request shows an example to retrieve all internal alerts for rec entity with trigger type equal to GT.

http://<your_api_server.com>/catalog/alert/rec?type=INTERNAL&trigger=GT

and the response will be:

{"alerts":[
{

"id" : "REC_ALERT_002",
"name" : "REC_ALERT_002",
"description" : "Internal alert to check if S00020114-0 value is greater than 45

→˓",
"entity" : "SAMCLA",
"type" : "INTERNAL",
"trigger" : "GT",
"expression" : "45",
"component" : "S00020114",
"sensor" : "S00020114-0"

}
]}

Remove alerts

Description

This action allows to delete alerts from the catalog. The internal alerts can only be deleted using the Catalog’s token
or through the Catalog console. The external alerts can only be removed using the entity’s owner token.

http://<your_api_server.com>/catalog/alert/<entity_id>

Note: entity_id can be also an Application or a Provider too.

Format json
Method DELETE, PUT
Permission Writing
Return No output data

Note that this action can be invoked using two HTTP methods: PUT and DELETE.

• DELETE will be used if we want to delete all of our alerts. It cannot contain any body content.

• PUT will be used when we want to delete a group of alerts. We should add the parameter method with delete
value to the request . In this case, the alerts to delete should be specified in the body message.

3.5. Services 33

Sentilo Documentation, Release 1.9.0

Parameters

The structure of input message if we want to delete a group is:

Key Description Optional
alertsIds Array of the alerts identifiers to delete Yes

Each element of the list corresponds to an identifier to an alert to delete.

Response data

This action does not return additional data beyond the HTTP status code.

Examples

Request to delete all alerts

If the entity rec wants to delete all its alerts, the request will be:

DELETE http://<your_api_server.com>/catalog/alert/rec

This action will delete all the external alerts belonging to entity rec. Be careful, if this request is done using the catalog
token, it will remove all the internal alerts!.

Request to delete a set of alerts

If the entity rec only wants to delete a set of alerts, the request will be:

PUT http://<your_api_server.com>/catalog/alert/rec?method=delete

and in the body message:

{"alertsIds":["REC-ALERT-01","REC-ALERT-02"]}

Description

The alert service provides methods to record, edit or retrieve alerts definition.

All requests for this service will have the following format:

http://<your_api_server.com>/catalog/alert/<entity_id>

where entity_id is optional and should be included depending on the operation. entity_id can be an Application or a
Provider.

There are two alert types: internal and external.

The internal alerts are related to specific sensors and its logic is defined using basic math rules or configuring an
inactivity time. They should be defined through the catalog console or by the API, but only using the catalog token.

The related alarms are triggered always by the Sentilo platform when the alert logic occurs.

34 Chapter 3. API Docs

../../general_model.html#reply

Sentilo Documentation, Release 1.9.0

The external alerts are defined by third party entities, which will be the responsibles of calculating their logic and
throw the related alarms when applies.

For both cases, the Sentilo platform is responsible of publishing the alarm for all entities subscribed to the related alert.

Actions

The available actions for this service are:

• Adding alerts

• Update alerts

• Retrieve list of authorized alerts

• Remove alerts

Internal trigger types

The list of trigger types accepted by Sentilo (and their associated expressions) are:

Id Description Expression value
GT Greater than <expression> Any numerical value
GTE Greater than or equal <expression> Any numerical value
LT Less than <expression> Any numerical value
LTE Less than or equal <expression> Any numerical value
EQ Equal <expression> Any value
CHANGE Any change Not apply here
CHANGE_DELTA Any variation greater to delta <expression> Any numerical value between 0 and 100
FROZEN No data received in <expression>minut es Any numerical value

The trigger types only apply for the internal alerts.

3.5.3 Catalog

Adding sensors or components to the catalog

Description

This action allows the provider to register one or more sensors / components in the catalog.

http://<your_api_server.com>/catalog/<provider_id>

Formats json
Method POST
Permission Writing
Returns No output data

3.5. Services 35

./create_alerts.html
./update_alerts.html
./retrieve_authorized_alerts.html
./delete_alerts.html

Sentilo Documentation, Release 1.9.0

Parameters

Key Description Optional
sensor Sensor ID to register No
description Sensor description Yes
type Sensor type No
dataType Sensor data types Yes
unit Unit of measure Yes
component Component identifier to which the sensor belongs Yes
componentType Component type Yes
componentDesc Component description Yes
location Location/s of the component to which the sensor is Yes
timeZone TimeZone used by sensor observations when it is different to UTC Yes
publicAccess Visualization check for the sensor in the public zone Yes
componentPublicAccess Visualization check for the component in the public zone Yes
additionalInfo Additional params related to the sensor Yes
componentAdditionalIn fo Additional params related to the component Yes
technicalDetails Technical params related to the sensor Yes
componentTechnicalDet ails Technical params related to the component Yes

Please, note the following observations:

• The state and substate of a sensor cannot be changed via te API, only from the catalog. The default value for
state is ‘online’, default value for substate is empty.

• The identifier must identify an univocal sensor provider, e.g., 2 sensors of the same provider may not have the
same ID.

• The identifier must have only alphanumeric (i.e. letters and numbers), undescores and hyphens characters, with
no embedded spaces.

• The list of sensor’s types are configured in the platform through the catalog web app. If you need a new one, it
must be added using the administration.

• The possible values for the data type of the sensor is also defined in the platform configuration. The possible
values are: number, text or boolean. The default value is number.

• If the attribute component is not passed as a parameter, the platform itself will create a catalog component with
the same name as the sensor (if it does not already exist).

• If the attribute componentType is not reported and the component does not already exists in the system, the
component will be defined as a generic component type.

• If the location attribute is not reported, the component is defined as a mobile type (with no fixed location).
Otherwise it will be defined as static and set its location with the coordinates provided. If the element has
several locations they should be informed separated by comma character.

• If the attribute type and / or componentType values are not configured in the catalog, the system will return a
400 error indicating that the parameters received are invalid .

• publicAccess param refers to the sensor’s visibility in the sensor’s public page. Default value is false.

• componentPublicAccess param refers to the components’s visibility in the public map. Default value is false.

• additionalInfo param is a <key,value> map that allows to store additional sensor information not mapped to any
specific parameter. The information of this data map must not follow any internal rule.

• componentAdditionalInfo param is a <key,value> map that allows to store additional component not mapped to
any specific parameter. The information of this data map must not follow any internal rule.

36 Chapter 3. API Docs

Sentilo Documentation, Release 1.9.0

• technicalDetails parameter is a <key,value> map that allows to store additional sensor information. The available
keys and their possible values are:

Descrip-
tion

Key Values

Producer producer not restricted
Model model not restricted
Serial
number

serial-
Number

not restricted

Energy energy 220VAC (electric network), 12_24_VDC (PoE), 185_230_V (lighting network),
AUT_BAT (battery), SOLAR_BAT (solar battery)

Response data

This action doesn’t return additional data beyond the HTTP status code associated with each request to the platform.

Examples

Adding one sensor

If you want to register a new humidity sensor with RE0025 identifier associated with the component whose identifier
is METEO-1 of rec provider, the request to do will be the following:

http://<your_api_server.com>/catalog/rec

and in the body message:

{"sensors":[
{"sensor":"RE0025",
"description":"sensor 25 of moisture",
"type":"humidity",
"dataType":"number",
"unit":"%",
"component":"METEO-1",
"componentType":"meteo",
"componentDesc":"Test componente",
"location":"41.39479 2.148768",
"timeZone":"CET"

}
]}

This request will register a new sensor with name METEO_HUM-1 in the system of humidity type . Additionally, this
sensor will be associated with the component METEO-1. If the component does not exist in the system yet , will be
registered with the properties defined in the request (componentType, componentDesc and location).

Adding several sensors

In case it is necessary to add a set of sensors, the request will be very similar to the previous one, modifying the
message body:

http://<your_api_server.com>/catalog/rec

3.5. Services 37

../../general_model.html#reply

Sentilo Documentation, Release 1.9.0

in the body message

{"sensors":[
{"sensor":"tt01_REC013",
"description":"sensor12",
"type":"humidity",
"dataType":"number",
"unit":"grams",
"component":"METEO-1",
"componentType":"meteo",
"location":"41.39479 2.148768"

},
{"sensor":"tt01_REC014",
"description":"sensor12",
"type":"humidity",
"dataType":"number",
"unit":"grams",
"component":"METEO-1",
"componentType":"estaciometeo",
"location":"41.39479 2.148768"

}
]}

In this case, instead of registering a single sensor, there will be added two new sensors associated with the component
named METEO-1. If the component does not yet exist in the system, will be registered with the properties specified
in the request (type and location).

Adding one sensor with additional info

If you want to register a new humidity sensor, as in the first example, but also need additional information for the
sensor and its component, the request to do is the following:

http://<your_api_server.com>/catalog/rec

and in the body message:

{"sensors":[
{"sensor":"RE0025",
"description":"sensor 25 of moisture",
"type":"humidity",
"dataType":"number",
"unit":"%",
"component":"METEO-1",
"componentType":"meteo",
"componentDesc":"Test componente",
"publicAccess":"true",
"componentPublicAccess":"true",
"location":"41.39479 2.148768",
"additionalInfo":{"accuracy":"4.5%","voltage":"2.1-3.6"},
"componentAdditionalInfo":{"altitude":"525 m."}

}
]}

This request will register a new sensor with name METEO_HUM-1 in the system of humidity type, as in the first
example, and stores with the sensor two new attributes: accuracy and voltage.

38 Chapter 3. API Docs

Sentilo Documentation, Release 1.9.0

Update data of a component / sensor

Description

This action permits to update the catalog information related to components and/or sensors of a provider.

http://<your_api_server.com>/catalog/<provider_id>

Format json
Method PUT
Permission Writing
Return No output data

Parameters

The structure of the input parameters depends on what we want to modify, sensor or component data.

The following describes the structure of the input parameters in each case:

Update components

Key Description Optional
components Components list (component) to update Yes

Each element component has the following structure:

Key Description Optional
component Component ID to update No
componentType Component type Yes
componentDesc Component description Yes
location Component location/s Yes
componentPublicAccess Visualization check for the public area Yes
componentAdditionalInfo Additional params Yes
componentTechnicalDetails Technical params Yes

The constraints and validation for the parameters are the same as described in Adding sensors or components.

Update sensors

Key Description Optional
sensors Sensors list (sensor) to update Yes

Each sensor element has the following structure:

3.5. Services 39

./create_sensors.html

Sentilo Documentation, Release 1.9.0

Key Description Optional
sensor Sensor ID to update No
description Sensor description Yes
type Sensor type Yes
dataType Data type of the sensor Yes
unit Measurement unit Yes
publicAccess Visualization check for the public area Yes
additionalInfo Additional params Yes
technicalDetails Technical params Yes

The constraints and validation for the parameters are the same as described in Adding sensors or components.

Response data

This action doesn’t return additional data beyond the HTTP status code.

Examples

Request to update the sensor data

If you want to modify the sensor’s description fot the identifiers RE0012 and RE0013, from rec provider, the request
will be:

http://<your_api_server.com>/catalog/rec

in the body message:

{"sensors":[
{"sensor":"REC012","description":"sensor 12"},
{"sensor":"REC013","description":"sensor 13"}

]}

This request will update the description of the sensors RE0012 and RE0013.

Note: If you need to move a sensor to another component, it should be done by deleting the sensor and creating it
again in the other component.

Request to update the component data

If we want to update component data of a provider, like update its location and additional info, the request will be:

http://<your_api_server.com>/catalog/rec

in the message body:

{"components":[
{"component":"COMP-2","location":"41.4051143 2.1320120","componentAdditionalInfo":{

→˓"altitude":"530 m."}}
]}

40 Chapter 3. API Docs

./create_sensors.html
../../general_model.html#reply

Sentilo Documentation, Release 1.9.0

Retrieve providers / sensors list

Description

This resource returns a list of providers and sensors for which you have at least read permission. Sensors that are in
the offline state won’t be listed. In addition, the service provides optional filtering by sensor type, component type and
component name.

http://<your_api_server.com>/catalog

Format json
Method GET
Permission Reading
Return List of providers, with their sensors, on which we has at least read permission

Parameters

Key Description Optional
type Sensor’s type filter Yes
component Component name filter Yes
componentType Component’s type filter Yes

Response data

As mentioned, this action, in addition to the HTTP status code, returns the list of providers for wich we have at least
read permission.

Key Description Optional
providers Providers list (provider) with at least read permission Not

Each provider will have the following structure:

Key Description Optional
provider Provider ID No
permission Indicates whether it readable (R) or write (W) on the provider No
sensors Provider list of sensors (sensor) No

Each list element (sensor) will have the following structure.

3.5. Services 41

../../general_model.html#reply

Sentilo Documentation, Release 1.9.0

Key Description Optional
sensor Sensor identifier No
description sensor description Yes
dataType Data sensor type:

• AUIDO_LINK
• BOOLEAN
• FILE_LINK
• IMAGE_LINK
• JSON
• LINK
• NUMBER
• TEXT
• VIDEO_LINK

No

location Location where de sensor is Yes
type Sensor type No
unit Unities in the sensor data coming Yes
timeZone Sensor’s timezone Yes
publicAccess Visualization check for the public

area
Yes

component Component is associated the sensor No
componentType Component type No
componentDesc Component description Yes
componentPublicAccess Visualization check for the public

area
Yes

additionalInfo Additional params related to the
sensor

Yes

technicalDetails Technical params related to the sen-
sor

Yes

componentTechnicalDet ails Technical params related to the
component

Yes

Examples

Request to retrieve all Providers / Sensors

http://<your_api_server.com>/catalog

in the response we will receive

{
"providers": [{

"provider": "A",
"permission": "WRITE",
"sensors": [{

"sensor": "MAR_01_00_SN001_1010",
"description": "Sound Sensor MODI 001",
"dataType": "NUMBER",
"type": "noise",
"unit": "dBa",
"state": "online",

(continues on next page)

42 Chapter 3. API Docs

Sentilo Documentation, Release 1.9.0

(continued from previous page)

"component": "MAR_01_00_SN001_1010",
"componentType": "generic",
"timeZone": "CET"

}]
}, {

"provider": "C",
"permission": "READ",
"sensors": [{

"sensor": "MAR_02_20_PM001_1010",
"description": "PM10 Sensor IMI 001",
"dataType": "NUMBER",
"type": "air_quality_pm10",
"unit": "ug/m3",
"state": "online",
"component": "air_quality",
"componentType": "generic"

}, {
"sensor": "MAR_02_20_PM001_1012",
"description": "PM10 Sensor IMI 002",
"dataType": "NUMBER",
"type": "air_quality_pm10",
"unit": "ug/m3",
"state": "online",
"component": "air_quality",
"componentType": "generic",
"additionalInfo": {

"supportMail": "support@imi.com"
},
"technicalDetails": {

"producer": "xxxx",
"model": "x-1",
"serialNumber": "9999",
"energy": "220VAC"

},
"componentTechnicalDetails": {

"producer": "XXXX",
"model": "X-1",
"serialNumber": "9999",
"macAddress": "00:17:4F:08:5F:61",
"energy": "12_24_VDC",
"connectivity": "WIFI"

}
}]

}]
}

Request to recover all the sensors in the catalog filtered by type

The request in this case is very similar to the previous one adding the type parameter:

http://<your_api_server.com>/catalog?type=air_quality_pm10

In this case as a response we will receive:

3.5. Services 43

Sentilo Documentation, Release 1.9.0

{"providers":[
{
"provider":"C","permission":"READ",
"sensors":
[{

"sensor":"MAR_02_20_PM001_1010",
"description":"PM10 Sensor IMI 001",
"dataType":"NUMBER",
"type":"air_quality_pm10",
"unit":"ug/m3",
"component":"air_quality",
"componentType":"generic"

},{
"sensor":"MAR_02_20_PM001_1012",
"description":"PM10 Sensor IMI 002",
"dataType":"NUMBER",
"type":"air_quality_pm10",
"unit":"ug/m3",
"component":"air_quality",
"componentType":"generic",
"additionalInfo":{"field1":"value1","field2":"value2"}

}
]

}
]}

Other examples

http://<your_api_server.com>/catalog?component=comp_demo&type=air_quality_pm10

http://<your_api_server.com>/catalog?componentType=air_quality&type=air_quality_pm10

Note: Only sensors will “online” state are returned by the API.

Delete components / sensors

Description

This action allows the provider to delete catalog components and/or sensors.

WARNING: this operation performs a cascade delete and the execution of this action cannot be undone.

http://<your_api_server.com>/catalog/<provider_id>?<parameter>=<value>

Format json
Method DELETE, PUT
Permission Writing
Return No output data

Note that his action can be invoked using two HTTP methods: PUT and DELETE.

44 Chapter 3. API Docs

Sentilo Documentation, Release 1.9.0

• DELETE we be used to delete all the sensors and components of a provider. It cannot contain body content.

• PUT will be used to delete a group of sensors or components. We should add a the parameter method with delete
value to the request. In this case, the sensors or components to delete should be specified in the body message.

Parameters

The structure of the input parameters depends on whether you want to delete components or sensors.

The following describes the structure of the input in each case:

Delete components

Key Description Optional
components Array of component identifiers to delete Yes

Each element of the list corresponds to an identifier of a component to delete.

Delete sensors

Key Description Optional
sensors Array of sensor identifiers to delete Yes

Each element of the list corresponds to an identifier of a sensor to delete.

Response data

This action does not return additional data beyond the HTTP status code.

Examples

Request to delete all components and sensors of a provider

To delete all components and sensors belonging to the provider named rec the request to do is the following:

DELETE http://<your_api_server.com>/catalog/rec

This request will delete in the catalog all the components and sensors of the rec provider

Request to delete a set of components of the catalog

To delete a set of components belonging to the provider rec the request to do is the following:

PUT http://<your_api_server.com>/catalog/rec?method=delete

in the body message:

3.5. Services 45

../../general_model.html#reply

Sentilo Documentation, Release 1.9.0

{"components":["COMP-3","COMP-4"]}

Request to delete a set of sensors of the catalog

To delete a set of sensors belonging to the provider rec the request to do is the following:

PUT http://<your_api_server.com>/catalog/rec?method=delete

in the body message:

{"sensors":["RE001","RE002","RE003"]}

Description

The catalog service allows to register or modify your own sensors/components or query the characteristics of a sensor
or provider.

All requests for this service will have the following format:

http://<your_api_server.com>/catalog/<provider_id>

where provider_id is optional and should be included depending on the operation.

Actions

The available actions for this service are:

• Adding components / sensors

• Update data components / sensors

• Retrieve list of providers / sensors

• Remove components / sensors

Component types

The list of component types should be configured for each Sentilo instance, the following list could be used as a
reference for any city:

Id Name Description
temperature Temperature Temperature measurement
noise Soundmeter Sound measurement
wind Anemometer Wind speed
humidity Humidity Humidity measurement
air_quality Air Quality Air Quality control
water_quality Water Quality Water Quality control
meteo Meteorology Weather Station
parking Occupation parking Parking control
luminosity Luminosity Luminosity measurement
glass_container Occupancy container level Glass occupancy container measurement

Continued on next page

46 Chapter 3. API Docs

./create_sensors.html
./update_sensors.html
./retrieve_authorized_entities.html
./delete_component_or_sensor.html

Sentilo Documentation, Release 1.9.0

Table 1 – continued from previous page
Id Name Description
paper_container Occupancy container level Paper occupancy container measurement
plastic_container Occupancy container level Plastic occupancy container measurement
organic_container Occupancy container level Organic occupancy container measurement
refuse_container Occupancy container level Refuse occupancy container measurement
container_volum Occupancy container level Generic occupancy container measurement
soil_moisture Soil moisture Soil moisture measurement
park_meter Parking meter Parking meter control
traffic Traffic Traffic measurement
people_flow People flow Pedestrian flow measurement
flowmeter Water flow Water flow measurement
solenoid_valve Electrovalve Solenoid control
salinity Salinity Soil salinity measurement
internal_ambient_cond itions Internal Environmental Conditions Temperature, humidity and luminosity measurement
external_ambient_cond itions External environmental conditions Temperature, humidity and luminosity measurement
network_analyzer Network analyzer Electric network analyzer
gas_meter Gas meter Gas consumption meter
electricity_meter Electricity meter Electricity consumption meter
water_meter Water meter Water consumption meter
soil_sensor Soil sensor Soil mesurement of salinity, mosture, etc
generic Generic component type Default component type if not specified
plugsense Plug & Sense Plug & Sense Libelium component

Sensor types

The list of sensor types should be configured for each Sentilo instance, the following list could be used as a reference
for any city:

Id Name Description
temperature Temperature Temperature measurement
noise Soundmeter Class II Sound level measuring class II.
noise_class_i Soundmeter Class I Sound level measuring class I
anemometer Anemometer Wind Speed measuring
humidity Humidity Humidity measuring
parking Occupation parking Occupation parking control
luminosity Luminosity Luminosity measuring
container_volum Occupancy container level Occupancy container measurement
container_overturn Container overturned Container overturned indicator
container_open Container open Container opening indicator
status Sensor status Status control
battery Battery level Battery level measurement
soil_moisture_15 Soil moisture 15 cm. Soil moisture measurement
soil_moisture_35 Soil moisture 35 cm. Soil moisture measurement
park_meter Parking meter Parking meter control
vehicle_volume Number of vehicles Measurement of number of vehicles
vehicle_occupation_av erage Average occupancy Measurement of average occupancy in vehicles
vehicle_speed Speed Vehicle Vehicle speed measurement
air_quality_no2 NO2 Nitrogen dioxide measurement
air_quality_pm10 PM10 Measurement of suspension particles PM10

Continued on next page

3.5. Services 47

Sentilo Documentation, Release 1.9.0

Table 2 – continued from previous page
Id Name Description
air_quality_pm25 PM25 Measurement of supsension particles PM25
air_quality_o3 O3 Ozone measurement
air_quality_so2 SO2 Sulfur dioxide measurement
air_quality_co CO Carbon Monoxide measurement
air_quality_co2 CO2 Carbon dioxide measurement
people_flow People flow Measurement of pedestrian flow
flowmeter Water flow Water flow measurement
solenoid_valve Electrovalve Solenoid actuator
eto Evotranspiration Evotranspiration measurement
salinity Salinity Soil salinity measurement
pluviometer Pluviometer Rain measurement
rain Rain gauge Rain indicator (it’s raining/it’s not raining)
wind Wind gauge Wind indicator (>X m/s)
wind_direction_6_m Wind direction Wind direction at 6 meters
wind_direction_10_m Wind direction Wind direction at 10 meters
voltage Voltmetre Electrical voltage measurement. Units: volts (V)
current Ammeter Electrical intensity measurement. Units amps (A)
frequency Frequencymeter Electrical frequency measurement. Units: herzs (Hz)
active_power Active power Active power measurement. Units: kilowatts (kW)
reactive_power Reactive power Reactive power measurement. Units: reactive kilovoltiamperis (kvar)
cosphi Power factor Sensor that relates the active and reactive power. No units
active_energy Active electrical energy meter Measurement of accumulated active power. Units: kWh.
reactive_energy Reactive electrical energy meter Measurement of accumulated reactive power. Units: kvarh.
gas_volume Gas meter Measurement of accumulated gas consumption. Units: m3 o Nm3
water_meter Water meter Measurement of accumulated water consumption. Units: m3 o l
global_solar_irradian ce Global solar irradiance Mesurement of solar irradiance
leaf_moisture Leaf moisture Leaf wetness
oxygen Oxygen O2
vertical_level Vertical level Vertical liquid level (water)
bend Bend Bend
lpg Lpg Liquified petroleum gases (H2, CH4, ethanol & isobutane)
crack_detection Crack detection Crack detection gauge
solar_radiation Solar radiation Solar radiation
voc Voc Volatile Organic Compounds
chloride_ion Chloride ion Ion Cl-
temperature Temperature Soil/Water temperature
magnessium_ion Magnessium ion Ion Mg2+
distance Distance Distance (by metalic pressure or by pressure)
conductivity Conductivity Conductivity
liquid_leakage_line Liquid leakage line Water Leakage / Liquid Detection (Line)
crack_propagation Crack propagation Crack propagation gauge
nitrate_ion Nitrate ion Ion NO3
hall_effect Hall effect Hall effect
vibration Vibration Vibration (lamina)
copper_ion Copper ion Ion Cu2+
calcium_ion Calcium ion Ion Ca+
dendometer Dendometer Trunk, stem or fruit diameter
iodide_ion Iodide ion Ion I-
bromide_ion Bromide ion Ion Br-

Continued on next page

48 Chapter 3. API Docs

Sentilo Documentation, Release 1.9.0

Table 2 – continued from previous page
Id Name Description
sodium_ion Sodium ion Ion Na+
linear_displacement Linear displacement Linear displacement
atmospheric_pressure Atmospheric pressure Atmospheric pressure
methane Methane CH4
pressure Pressure Pressure/ Weight
ammonia Ammonia NH3
redox_potential Redox potential Oxidation Reduction Potential
proximity_indoor Proximity indoor Ultrasound (indoor)
air_pollutant Air pollutant Air pollutants-I (NH3, SH2, ethanol and toluene) and air pollutants-II (H2, CH4, CO, ethanol and isobutane)
liquid_leakage_point Liquid leakage point Water Leakage / Liquid Detection (Point)
proximity_outdoor Proximity outdoor Ultrasound (outdoor IP67)
potassium_ion Potassium ion Ion K+
o_saturation O saturation Dissolved Oxygen
presence Presence Presence (PIR)
stretch Stretch Stretch
liquid_level Liquid level Horizontal liquid level (combustibles or water)
load Load Load
fluoride_ion Fluoride ion Ion F-
ph Ph pH
solvent_vapors Solvent vapors Solvent vapors (H2, CH4, CO, ethanol and isobutane)
accelerometer Accelerometer Accelerometer

3.5.4 Data

Publish observations from a sensor

Description

This action allows a provider to publish the observations made by one of its sensors.

http://<your_api_server.com>/data/<provider_id>/<sensor_id>

Formats json
Method PUT
Permission Writing
Retorna No output data

Parameters

Key Description Op-
tional

observa-
tions

Observations list to publish. No

location Geolocation coordinates in which the sensor got the observations(latitude longitude for-
mat).

Yes

Each observation will have the following structure:

3.5. Services 49

Sentilo Documentation, Release 1.9.0

Key Description Op-
tional

value Observation value to register No
times-
tamp

Date and time when the observation was made (format dd/MM/yyyyTHH:mm:ssZ) Yes

location Geolocation coordinates, in decimal degrees, in which the sensor got the observa-
tions(latitude longitude format)

Yes

Please note the following:

• If you send an observation of a sensor without specifying timestamp, the platform will use the current timestamp
as measurement time.

• The location of the observations is optional. But in case you want to set it, you can do it for all observations
and/or individually for each one. The location informed for each observation takes precedence over the global
localization.

• The TimeZone (Z) in the timestamps is optional. Its default value is UTC.

• In previous releases (up to 1.5.x) the system permitted publication of sensors that weren’t registered in the
catalog. Since 1.6, the sensor has to be correctly registered.

• If the sensor is in offline state, the server rejects the publication.

Response data

This action does not return additional data beyond the HTTP status code.

Examples

Request to publish the last observation of a sensor

To publish an observation of a sensor service provides two ways to do it.

Abbreviated request

If we want to publish the last observation for the sensor with RE0012 identifier belonging to the provider with rec
identifier we just have to add the value to the URL. In this case we can not send timestamp nor location:

http://<your_api_server.com>/data/rec/RE0012/12.3

where 12.3 is the observation value.

As indicated previously, this request will register a new observation (value 12.3) for the specified sensor. The times-
tamp of the observation will be the instant of arrival of the request to the platform.

Normal Request

If you wish to send the timestamp and the location of the observation too, we should use the format described, and
send information in the body of the request.

For example, if in we want to include the timestamp of the observation, the request to do will be the following:

50 Chapter 3. API Docs

../../general_model.html#reply

Sentilo Documentation, Release 1.9.0

http://<your_api_server.com>/data/rec/RE0012

in the body message

{"observations":[{
"value":"12.3",
"timestamp":"17/09/2012T12:34:45"}

]}

This request will register a new observation(value 12.3) with the received timestamp (UTC time zone in this case) of
the measurement.

Another example: it shows how to publish the temperature measured on Barcelona at a given time, sending the time
in the Barceloca local time zone (CET):

{"observations":[{
"value":"9.6",
"timestamp":"17/02/2016T11:43:45CET",
"location": "41.3888 2.15899"}

]}

Request to publish several observations of the same sensor

If you want to send more of an observation of a sensor, the request is very similar to the previous one, only changing
the message body.

http://<your_api_server.com>/data/rec/RE0012

in the body message

{"observations":[{
"value":"10.1"

},{
"value":"11.2",
"timestamp":"17/09/2012T12:34:45"

},{
"value":"12.3",
"timestamp":"17/09/2012T10:34:45"

}
]}

In this case are three observations with the corresponding timestamps.

Publishing observations from different sensors

Description

This action allows a provider to publish details of the observations made by more than one sensor in a single message.

http://<your_api_server.com>/data/<provider_id>

3.5. Services 51

Sentilo Documentation, Release 1.9.0

Format json
Method PUT
Permission Writing
Return No output data

Parameters

Key Description Optional
sensors List of sensors (sensor) for which we publish at least one observation No

Each sensor will have the following structure:

Key Description Op-
tional

sensor Sensor identifier No
observa-
tions

Observations list (observation) to publish No

location Geolocation coordinates in which the sensor observations are obtained (latitude longitude
format)

Yes

Each observation will have the structure described on page Publish observations of a sensor:

Key Description Op-
tional

value Observation value No
times-
tamp

Date and time at which the observation was made (dd/MM/yyyyTHH:mm:ssZ format) Yes

location Geolocation coordinates in which the sensor has achieved this observation (latitude longi-
tude format).

Yes

Response Data

This action does not return additional data beyond the HTTP status code.

Examples

Request to send multiple observations of several sensors setting a LTC TimeZone

If we want to send the observations of a set of sensors for the provider named rec, setting timeZone to CET, the request
to do is:

http://<your_api_server.com>/data/rec

and in the body message:

52 Chapter 3. API Docs

./publish_sensor_data.html
../../general_model.html#reply

Sentilo Documentation, Release 1.9.0

{"sensors":[
{
"sensor":"RE0012",
"observations":[

{"value":"1.1"},
{"value":"1.2",
"timestamp":"17/09/2012T12:34:45CET"},

{"value":"1.3",
"timestamp":"17/09/2012T10:34:45CET"}

]
},{
"sensor":"RE0013",
"location":"41.12345 2.12354",
"observations":[

{"value":"2.1"},
{"value":"2.2",
"timestamp":"16/09/2012T15:43:21CET"},

{"value":"2.3",
"timestamp":"16/09/2012T10:43:21CET"}

]
}

]}

Delete Observations

Description

This action allows to delete observations made by one or several sensors of a provider.

http://<your_api_server.com>/data/<provider_id>/<sensor_id>

Formats json
Method DELETE
Permission Writing
Returns No output data

Parameters

No additional data is sent.

Response data

This action does not return additional data beyond the HTTP status code.

Examples

Request to delete the last observation of a sensor

If we want delete the last observation received by the plataform of the sensor with id REC1102 of the provider named
rec, the request to do is:

3.5. Services 53

../../general_model.html#reply

Sentilo Documentation, Release 1.9.0

http://<your_api_server.com>/data/rec/RE0012

Request to delete the last observations of a provider´s sensors

If we want to delete the last observation of each sensor ot the provider named rec, the request to do is:

http://<your_api_server.com>/data/rec

Retrieve sensor observations

Description

This action allows you to retrieve the latest observations of a sensor. In addition, the service can also permits to
specify search criteria to retrieve observations: filter by a given time period and / or to indicate the maximum number
of observations to be retrieved.

http://<your_api_server.com>/data/<provider_id>/<sensor_id>?<parameter>=<value>

Format json
Method GET
Permission Reading
Returns Observations list

Parameters

Key Description Optional
from Indicates the beginning of the time period for which you want to retrieve observations Yes
to Indicates the end of the time period for which you want to retrieve observations Yes
limit Indicates the number of observations to retrieve Yes

Please, note the following:

• The maximum number of records returned will be fixed by the platform settings. If the parameter passed is
higher, the number of records returned will be equals to the maximum value configured in the platform.

• If the limit parameter is not set, only one observation will be returned.

• All dates must have the following format: dd/MM/yyyyTHH:mm:ssZ with Z as optional (and with default value
UTC)

Response data

As mentioned, in addition to HTTP status code, the observation data is returned in the body contents as a list of
observations:

Key Description Optional
observations List the observations (observation) No

54 Chapter 3. API Docs

../../general_model.html#reply

Sentilo Documentation, Release 1.9.0

Each observation has the following structure:

Key Description Op-
tional

value Observation value No
times-
tamp

The time when the observation was made based on UTC (dd/MM/yyyyTHH:mm:ss for-
mat)

No

time The time when the observation was made in milliseconds No
location Geolocation coordinates in which the sensor was recorded observation Yes

Examples

Request to retrieve the latest observations of a sensor based on a date

The following request shows an example in which a call is made to retrieve the last 20 observations of the sensor with
RE0012 identifier of the provider named rec which have been registered from 10/01/2013.

http://<your_api_server.com>/data/rec/RE0012?limit=20&from=10/01/2013T10:00:00

As response we receive:

{"observations":[
{

"value":"28.61132406103821",
"timestamp":"13/11/2017T09:00:00",
"time":1510563600000

},{
"value":"20.795568440010314",
"timestamp":"13/11/2017T08:30:00",
"time":1510561800000

},{
"value":"91.01094902496055",
"timestamp":"13/11/2017T08:30:00",
"time":1510561800000

},{
"value":"62.22915604583776",
"timestamp":"11/01/2013T08:16:38",
"time":1510561800000

},{
"value":"99.96065618303348",
"timestamp":"11/01/2013T07:16:38",
"time":1510561800000

},{
"value":"94.95685904585568",
"timestamp":"11/01/2013T06:16:38",
"time":1510561800000

},{
"value":"51.26506022800391",
"timestamp":"11/01/2013T05:16:38",
"time":1510561800000

},{
"value":"21.43303677241535",
"timestamp":"11/01/2013T04:16:38",

(continues on next page)

3.5. Services 55

Sentilo Documentation, Release 1.9.0

(continued from previous page)

"time":1510561800000
},{

"value":"55.6601921120059",
"timestamp":"11/01/2013T03:16:38",
"time":1510561800000

},{
"value":"56.692086830598996",
"timestamp":"11/01/2013T02:16:38",
"time":1510561800000

}
]}

Request to retrieve the last observation of a sensor

If you only want to retrieve the last observation of the RE0012 sensor, the request to do is:

http://<your_api_server.com>/data/rec/RE0012

As response we will receive:

{"observations":[{
"value":"11.5",
"timestamp":"18/09/2012T17:20:00",
"time":1510561800000}

]}

Read observations from provider’s sensors

Description

This action allows to retrieve the latest observations of the sensors of a provider. In addition, the service can also
specify search criterias to retrieve observations: filter by a given time period and / or to indicate the maximum number
of observations to be recovered.

http://<your_api_server.com>/data/<provider_id>?<parameter>=<value>

Format json
Method GET
Permission Reading
Return List with the observations from provider’s sensors

Parameteres

Key Description Optional
from Indicates the beginning of the time period for which you want to retrieve the observations. Yes
to Indicates the end of the time period for which you want to retrieve the observations. Yes
limit Specifies the maximum number of observations for each sensor to recover. Yes

Please note the following:

56 Chapter 3. API Docs

Sentilo Documentation, Release 1.9.0

• The maximum number of records returned will be fixed by the platform settings. If the parameter passed is
higher, the number of records returned will be equalsa to the maximum value configured in the platform.

• If the limit parameter is not set, only one record will be returned.

• All dates must have the following format: dd/MM/yyyyTHH:mm:ss

Response data

In addition to the HTTP status code, the observation data is returned in the body contents as a list of observations:

Key Description Optional
sensor List of sensors (sensor) for the observations that have been retrieved No

Each sensor has the following structure:

Key Description Optional
sensor Sensor identifier No
observations List of the latest sensor observations No

Finally, each observation (observation) has the following structure:

Key Description Opional
value Observation value No
timestamp The time at which the observation was made (dd/MM/yyyyTHH:mm:ss format) No
time The time when the observation was made in milliseconds No
location Geolocation coordinates in which the sensor was recorded observation Yes

Examples

Request to retrieve the latest observations from a provider after a given date

If we want to retrieve the latest observations of the sensors associated with the provider named rec from a given date
we should make the following request:

http://<your_api_server.com>/data/rec?from=10/09/2012T10:00:00

As response we will receive:

{"sensors":[
{

"sensor":"RE0012",
"observations":
[{

"value":"1",
"timestamp":"10/09/2012T10:05:00",
"time":1510561800000

},{
"value":"1.2",
"timestamp":"10/09/2012T07:05:00",
"time":1510561800000

}]

(continues on next page)

3.5. Services 57

../../general_model.html#reply

Sentilo Documentation, Release 1.9.0

(continued from previous page)

},{
"sensor":"RE0013",
"observations":
[{

"value":"24",
"timestamp":"10/09/2012T10:06:10",
"time":1510561800000

}]
}

]}

Request to retrieve the latest observations from rec provider

If you only want to retrieve the last observation of the RE0012 sensor, the request to do is:

http://<your_api_server.com>/data/rec

As response we will receive:

{"sensors":[
{

"sensor":"RE0012",
"observations":
[{

"value":"1",
"timestamp":"10/09/2012T10:05:00",
"time":1510561800000

}]
},{

"sensor":"RE0013",
"observations":
[{

"value":"24",
"timestamp":"10/09/2012T10:06:10",
"time":1510561800000

}]
}

]}

Description

The data service allows to read, write or delete the observations of the registered sensors.

All requests for this service will have the following format:

http://<your_api_server.com>/data/<provider_id>/<sensor_id>

where <provider_id> and <sensor_id> correspond to the sensor and provider identifiers on which we want to perform
the requested action.

Actions

The available actions for this service are:

58 Chapter 3. API Docs

Sentilo Documentation, Release 1.9.0

• Publish observations of a sensor

• Publish observations from sensors of a provider

• Delete observations

• Read observations from a sensor

• Read observations from sensors of a provider

3.5.5 Order

Publish an order

Description

This operation allows to send an order to single sensor or to all sensors of a provider. Once the system receives the
order, it sends a notification to all its subscribers.

http://<your_api_server.com>/order/<provider_id>/<sensor_id>

Format json
Method PUT
Permission Writing
Return No output data

Parameters

Each order will have its specific structure with its associated information in the defined format (JSON).

The platform will only transfer the information to the subscribers, without checking its contents nor reading into it.

Key Description Optional
order Orden content Not

Response data

This action does not return additional data beyond the HTTP status code.

Examples

Publish an order to a sensor/actuator

The following example shows how to send a request to the platform to publish a new order destined to the sensor with
RE0012 identifier belonging to the provider with ID rec:

http://<your_api_server.com>/order/rec/RE0012

in the body message:

3.5. Services 59

./publish_sensor_data.html
./publish_provider_sensor_data.html
./delete_sensor_data.html
./retrieve_sensor_data.html
./retrieve_provider_sensor_data.html
../../general_model.html#reply

Sentilo Documentation, Release 1.9.0

{"order":"Stop"}

Publish an order to all the provider’s sensors/actuators

The following example shows how to send a request to the platform to publish a new order to all the sensors belonging
to the provider with rec identifier:

http://<your_api_server.com>/order/rec

in the body message

{"order":"Start RE0012, RE0013"}

Retrieve orders

Description

This action allows you to retrieve the last orders associated with a sensor or provider. In addition,we can also specify
search criteria to retrieve the orders: filter by a given time period and/or indicate the maximum number of orders that
you want to retrieve.

http://<your_api_server.com>/order/<provider_id>/<sensor_id>?<parameter>=<value>

Format json
Method GET
Permission Read
Retorns List of orders destined to sensor or provider listed

Parameters

Key Description Optional
from Indicates the beginning of the time period for which you want to retrieve orders. Yes
to Indicates the ending of the time period for which you want to retrieve orders. Yes
limit Specifies the maximum number of orders to retrieve. Yes

Please, note the following:

• The maximum number of records returned will be fixed by the platform settings. If the parameter passed is
higher, the number of records returned will be the configured in the platform.

• If the limit parameter is not set, only one record will be returned.

• All dates must have the following format: dd/MM/yyyyTHH:mm:ss

Response data

As mentioned, in addition to HTTP status code, the requested data is returned in the body contents as a list of orders.

The response structure depends on what we are retrieving, orders from a sensor or a provider.

60 Chapter 3. API Docs

../../general_model.html#reply

Sentilo Documentation, Release 1.9.0

Last orders for a sensor

Key Description Optional
orders List with the last sensor’s order No

Each order will have the following structure:

Key Description Optional
order Order message recorded at the time the order was published No
timestamp The time when the order was made (dd/MM/yyyyTHH:mm:ss format) No
sender Entity identifier that issued the order. No
time The time when the observation was made in milliseconds No

Last orders for provider

Key Description Optional
sensors List with sensors (sensor) No

Each (sensor) will have the following structure:

Key Description Optional
sensor Sensor identifier No
orders List with the last orders for the sensor No

Finally, each command (order) will have the structure that we have defined previously.

Key Description Optional
order Order message recorded at the time the order was published No
timestamp The time when the order was made (dd/MM/yyyyTHH:mm:ss format) No
sender Entity identifier that issued the order. No

Examples

Retrieve the last order for a sensor

To retrieve the last order for the sensor with RE0012 identifier belonging to the provider named rec, we do the following
request:

http://<your_api_server.com>/order/rec/RE0012

As response we will get:

{"orders":[{
"order":"Shutdown",
"timestamp":"21/03/2013T14:25:39",
"sender":"app_demo_provider"}]

}

3.5. Services 61

Sentilo Documentation, Release 1.9.0

Retrieve the last N orders for a sensor

If we want to retreive more than one order, we can specify the number of records to retrieve with the following request:

http://<your_api_server.com>/order/rec/RE0012?limit=3

As response we will get:

{"orders":
[{

"order":"Shutdown",
"timestamp":"21/03/2013T14:25:39",
"sender":"app_demo_provider",
"time":1510570798597

},{
"order":"Start",
"timestamp":"20/03/2013T23:59:59",
"sender":"app_demo_provider",
"time":1510570798597

},{
"order":"Shutdown",
"timestamp":"20/03/2013T14:25:39",
"sender":"app_demo_provider",
"time":1510570798597

}
]}

Retrieve the last N orders for a sensor between dates

If we want to retrieve orders for a sensor between two dates, we should do the following request:

http://<your_api_server.com>/order/rec/RE0012?limit=3&from=19/03/2013T00:00:00&to=20/
→˓03/2013T23:59:59

As response we will get:

{"orders":
[{

"order":"Start",
"timestamp":"20/03/2013T23:59:59",
"sender":"app_demo_provider",
"time":1510570798597

},{
"order":"Shutdown",
"timestamp":"20/03/2013T14:25:39",
"sender":"app_demo_provider",
"time":1510570798597

}
]}

Retrieve the last orders for a provider

All the previous examples are focused on recovering the last command of a sensor, but the service also allows you to
search the latest orders destined for all the sensors of provider.

62 Chapter 3. API Docs

Sentilo Documentation, Release 1.9.0

In this case, we only specify the provider, and the request will be:

http://<your_api_server.com>/order/rec2

As response we get a list of sensor elements, and each one will contain its last orders.

{"sensors":
[{

"sensor":"RE0012",
"orders":
[{

"order":"Shutdown",
"timestamp":"21/03/2013T14:25:39",
"sender":"app_demo_provider",
"time":1510570798597

}]
},{

"sensor":"RE0013",
"orders":
[{

"order":"Shutdown",
"timestamp":"21/03/2013T14:25:39",
"sender":"app_demo_provider",
"time":1510570798597

}]
},{

"sensor":"RE0014",
"orders":
[{

"order":"Shutdown",
"timestamp":"21/03/2013T14:25:39",
"sender":"app_demo_provider",
"time":1510570798597

}]
}]

}

Description

The order service allows to send or retrieve orders to sensors/actuators.

All requests for this service will have the following format:

http://<your_api_server.com>/order/<provider_id>/<sensor_id>

The sensor identifier, <sensorId>, is optional and should be informed depending on the action we want to execute.

Actions

The available actions for this service are:

• Publish orders

• Retrieve orders

3.5. Services 63

./publish_order.html
./get_orders.html

Sentilo Documentation, Release 1.9.0

3.5.6 Subscription

Subscription to sensor data

Description

This action allows to subscribe to observation data associated to sensors.

It’s important to note that we only can subscribe to the sensor data over we own read permission.

http://<your_api_server.com>/subscribe/data/<provider_id>/<sensor_id>

Format json
Method PUT
Permission Read
Returns No additional data returned

Parameters

Key Description Op-
tional

endpoint URL where the platform will send a HTTP request with the observation data No
secret-
Call-
backKey

Secret key for callbacks Yes

retries Maximum number of retries Yes
re-
tries_delay

Delay parameter in minutes. Delays are spaced exponentially according to following equation:
delay (N) = delay * 2^(N-1) Where N is the current entry turn. More detailed explanation
follows.

Yes

Retries

In case the remote endpoint is down or does not respond with an success HTTP 2xx code, Sentilo can try to resend
the data later. In order to overcome major number of remote outages, Sentilo sends the data in delay times that are
exponential according to equation:

delay (N) = delay * 2^(N-1)

For example, if we have a subscription configured with 5 retries and 10 minutes, first retry would occur at 10 minutes,
the second 20 minutes after the first, the third 40 minutes after the second, etc up to the fifth retry.

The total time used for the 5 retries would occur in 10+20+40+80+160=310 minutes after the first failed intent.

Response data

This action does not return additional data beyond the HTTP status code.

Examples

64 Chapter 3. API Docs

../../general_model.html#reply

Sentilo Documentation, Release 1.9.0

Request to subscribe to a sensor’s data

If we want to susbcribe to the sensor’s data with RE0012 identifier of the provider named rec, the request will be:

http://<your_api_server.com>/subscribe/data/rec/RE0012

and the body message:

{"endpoint":"http://<your_endpoint_notification_server.com>/resource"}

Request to subscribe to provider’s data

If we want to subscribe to all the sensors belonging to a provider, the request will be:

http://<your_api_server.com>/subscribe/data/rec

and the body message:

{"endpoint":"http://<your_endpoint_notification_server.com>"}

Subscription to orders

Description

This action allows to subscribe to orders associated to sensors.

It’s important to note that we only can subscribe to the sensor data over we own read permission.

http://<your_api_server.com>/subscribe/order/<provider_id>/<sensor_id>

Formats json
Method PUT
Permission Read
Returns No additional data returned

Parameters

Key Description Op-
tional

endpoint URL where the platform will send a HTTP request with the order data No
secret-
Call-
backKey

Secret key for callbacks Yes

retries Maximum number of retries Yes
re-
tries_delay

Delay parameter in minutes. Delays are spaced exponentially according to following equation:
delay (N) = delay * 2^(N-1) Where N is the current entry turn. More detailed explanation
follows.

Yes

Retries

3.5. Services 65

Sentilo Documentation, Release 1.9.0

In case the remote endpoint is down or does not respond with an success HTTP 2xx code, Sentilo can try to resend
the data later. In order to overcome major number of remote outages, Sentilo sends the data in delay times that are
exponential according to equation:

delay (N) = delay * 2^(N-1)

For example, if we have a subscription configured with 5 retries and 10 minutes, first retry would occur at 10 minutes,
the second 20 minutes after the first, the third 40 minutes after the second, etc up to the fifth retry.

The total time used for the 5 retries would occur in 10+20+40+80+160=310 minutes after the first failed intent.

Response data

This action does not return additional data beyond the HTTP status code.

Examples

Request to subscribe to orders for a sensor

If we want to susbcribe to the orders for the sensor with RE0012 identifer of the provider named rec, the request will
be:

http://<your_api_server.com>/subscribe/order/rec/RE0012

and the body message:

{"endpoint":"http://<your_endpoint_notification_server.com>"}

Request to subscribe to orders for a provider

If we want to subscribe to all the sensor’s orders belonging to the rec provider, the request will be:

http://<your_api_server.com>/subscribe/order/rec

and like body message:

{"endpoint":"http://<your_endpoint_notification_server.com>"}

Subscription to alerts

Description

This action allows to subscribe to alarms associated to sensors.

It’s important to note that we only can subscribe to the sensor data over we own read permission.

http://<your_api_server.com>/subscribe/alarm/<alert_id>

66 Chapter 3. API Docs

../../general_model.html#reply

Sentilo Documentation, Release 1.9.0

Format json
Method PUT
Permission Read
Returns No additional data returned

Parameters

Key Description Op-
tional

endpoint URL where the platform will send a HTTP request with the alarm message No
secret-
Call-
backKey

Secret key for callbacks Yes

retries Maximum number of retries Yes
re-
tries_delay

Delay parameter in minutes. Delays are spaced exponentially according to following equation:
delay (N) = delay * 2^(N-1) Where N is the current entry turn. More detailed explanation
follows.

Yes

Retries

In case the remote endpoint is down or does not respond with an success HTTP 2xx code, Sentilo can try to resend
the data later. In order to overcome major number of remote outages, Sentilo sends the data in delay times that are
exponential according to equation:

delay (N) = delay * 2^(N-1)

For example, if we have a subscription configured with 5 retries and 10 minutes, first retry would occur at 10 minutes,
the second 20 minutes after the first, the third 40 minutes after the second, etc up to the fifth retry.

The total time used for the 5 retries would occur in 10+20+40+80+160=310 minutes after the first failed intent.

Response data

This action does not return additional data beyond the HTTP status code.

Examples

Request to subscribe to alert’s alarms

If we want to register a new subscription for alarms belonging to the alert with alert1 identifier, the request will be:

http://<your_api_server.com>/subscribe/alarm/alert1

and the body message:

{"endpoint":"<your_endpoint_notification_server.com>"}

3.5. Services 67

../../general_model.html#reply

Sentilo Documentation, Release 1.9.0

Retrieve active subscriptions

Description

This action allows to retrieve the list of all our active subcriptions. Additionally, we can retrieve only subscriptions
from a specific type.

http://<your_api_server.com>/subscribe/<event_type>

Format json
Method GET
Permission Read
Returns Active subscriptions

<event_type> is optional and allows to filter the subscription by type.

Parameters

No additional parameters can be used.

Response data

This action, additionally to the HTTP status code, will return a list of our active subscriptions:

Key Description Optional
subscriptions List with all our active subscriptions No

Each subscription element contains this set of attributes:

Key Description Optional
endpoint URL defined in the subscription No
type Event type related to the subscription(data, order o alarm) No
provider In case the type is data or order this attribute contains the provider identifier Yes
sensor In case the type is data or order this attribute contains the sensor identifier Yes
alarm In case the type is alarm this attribute contains the alert identifier Yes

Examples

Request to retrieve all active subscriptions

http://<your_api_server.com>/subscribe

As response we will obtain:

{
"subscriptions":
[{

"endpoint":"http://<your_endpoint_notification_server.com>",

(continues on next page)

68 Chapter 3. API Docs

../../general_model.html#reply

Sentilo Documentation, Release 1.9.0

(continued from previous page)

"type":"ALARM",
"alert":"alerta1"

},{
"endpoint":"http://<your_endpoint_notification_server.com>",
"type":"DATA",
"provider":"app_demo_provider",
"sensor":"appdemo_sensor5_test"

},{
"endpoint":"http://<your_endpoint_notification_server.com>",
"type":"DATA",
"provider":"app_demo_provider",
"sensor":"appdemo_sensor_test"

},{
"endpoint":"http://<your_endpoint_notification_server.com>",
"type":"ALARM","alert":"11"

}]
}

Request to retrieve active subscriptions for a specific type

If we want to retrieve only the subscriptions to a specific event type:

http://<your_api_server.com>/subscribe/alarm

As response we will obtain:

{
"subscriptions":
[{

"endpoint":"http://<your_endpoint_notification_server.com>",
"type":"ALARM",
"alert":"alert1"

},{
"endpoint":"http://<your_endpoint_notification_server.com>",
"type":"ALARM",
"alert":"alert11"

}]
}

Cancel subscriptions

Description

This action allows to cancel any or a set of our active subscriptions.

http://<your_api_server.com>/subscribe/<event_type>/<resource_id>

Format json
Method DELETE
Permission Write
Returns No additional data returned

3.5. Services 69

Sentilo Documentation, Release 1.9.0

<event_type> and <resource_id> are optional and allow to filter the subscription to cancel by event type or related
resource.

Parameters

No additional data can be sent.

Response data

This action does not return any additional data beyond the HTTP status code.

Examples

Request to cancel subscriptions

If we want to cancel all our active subscriptions, the request will be:

http://<your_api_server.com>/subscribe

Request to cancel subscriptions for a specific event type

If we want to cancel all our active subscriptions of a specific event type like order, the request will be:

http://<your_api_server.com>/subscribe/order

Request to cancel subscriptions for a specific resource

If we want to cancel all our active data subscriptions of a specific sensor like RE0012 belonging to the rec provider,
the request will be:

http://<your_api_server.com>/subscribe/data/rec/RE0012

Description

The subscription service allows to the platform clients(application/modules or provider/sensors) to subscribe to system
events, which can be:

• Data: related to data observations received by the platform

• Order: related to orders received by the platform

• Alarm: related to alarms received by the platform

It is also possible to retrieve the list of active subscriptions or cancel them.

All requests for this service will have the following format:

http://<your_api_server.com>/subscribe/<event_type>/<resource_id>

where <resource_id> identifies the system resource to which the request applies (providers, sensors or alerts).

70 Chapter 3. API Docs

../../general_model.html#reply

Sentilo Documentation, Release 1.9.0

Actions

The available actions for this service are:

• Subscription to sensor data

• Subscription to orders

• Subscription to alerts

• Retrieve active subscriptions

• Cancel subscription

Notifications

As mentioned before, when we subscribe to a system event, the platform will send us a notification (push process),
whenever the event occurs, through a HTTP POST request to the URL configured with the subscription.

The notification message follows the following structure:

{
"message":"...",
"timestamp":"...",
"topic":"...",
"type":"...",
"sensor":"...",
"provider":"...",
"location":"...",
"alert":"...",
"alertType":"...",
"time":"...",
"tenant":"..."
"publisher":"...",
"publisherTenant":"...",
"publishedAt":"..."

}

where the following fields are mandatory:

• message: contains the event information (observation, alarm or order)

• timestamp: contains the timestamp associated with the event, formatted as UTC (dd/MM/yyyy’T’HH:mm:ss).

• topic: identifies the subscription related to the event.

• type: identifies the event type (DATA, ORDER or ALARM)

• time: same as timestamp but expressed as milliseconds

and the following are optional and depend on the event type:

• sensor: contains the sensor identifier related to the event.

• provider: contains the provider identifier related to the event.

• location: only added in observation notifications when the location is filled in.

• sender: this field has been removed in version 1.6. See publisher field.

• alert: only added in alarm notifications. Contains the alert identifier related to the alarm.

• alertType: only added in alarm notifications. Contains the alert type: INTERNAL or EXTERNAL.

3.5. Services 71

./retrieve_sensor_observations.html
./retrieve_sensor_orders.html
./retrieve_alerts.html
./retrieve_subscription_list.html
./cancel_subscription.html

Sentilo Documentation, Release 1.9.0

• retryAttempt: if the delivery of the message fails, this number indicates a number of the retries. See for example
how to define retries in data subscription.

• publisher: identifies the entity who has published the event.

• publishedAt: this field differs from time field in that it always stores the time when the event was published on
Sentilo.

• tenant: only added in multitenant instances. This field identifies the tenant to which the event belongs.

• publisherTenant: only added in multitenant instances. This field identifies the tenant to which the publisher
belongs.

Here are three different examples of notification:

{
"message":"8",
"timestamp":"26/10/2016T08:50:33",
"topic":"/data/app_demo_provider/appdemo_sensor_test",
"type":"DATA",
"provider":"app_demo_provider",
"sensor":"appdemo_sensor_test",
"retryAttempt": 1,
"publisher":"app_demo_provider",
"time":1477471833000,
"publishedAt":1477471833000

}

{
"message":"Stop",
"timestamp":"16/10/2013T15:39:11",
"topic":"/order/app_demo_provider",
"type":"ORDER",
"provider":"app_demo_provider",
"publisher":"app_demo_provider",
"time":1477471833000,
"publishedAt":1477471833000

}

{
"message":"Value greater than 34",
"timestamp":"16/10/2013T15:40:57",
"topic":"/alarm/internalAlarmProve",
"type":"ALARM",
"sensor":"app_demo",
"alert":"ALERT_GT14",
"alertType":"INTERNAL",
"publisher": :"sentilo"
"time":1477471833000,
"publishedAt":1477471833000

}

If the subscription has included a secret key, the following messages will include the security headers (see more).

Notifications to untrusted HTTPS

In case that remote endpoint uses a self-signed certificate, add the following configuration in the config.
properties of the sentilo-platform-server:

72 Chapter 3. API Docs

./retrieve_sensor_observations.html
../../security.html#securityCallbacks

Sentilo Documentation, Release 1.9.0

#Allows Sentilo to send notifications to untrusted servers, i.e., servers with self
→˓signed certificates or signed by unknown CAs
api.subs.ssl.no-validate-certificates=false

The Application Programming Interface (API) of Sentilo defines a set of commands, functions and protocols that must
be followed by who wants to interact with the system externally.

This area defines the Application Programming Interface (API), that any sensor or application must use to interact
with the platform.

The starting capacities of the platform related to its external interface are:

• Allows to register applications/modules and providers/sensors in the platform (Catalog).

• Allow to applications/modules and sensors subscribe to services defined in the catalog as well as post events
occurring (Publish/Subscribe).

• Allow you to send information from sensors to applications/modules (Data).

• Allows to send orders from applications/modules to sensors (Order).

3.5. Services 73

Sentilo Documentation, Release 1.9.0

74 Chapter 3. API Docs

CHAPTER 4

Architecture

Sentilo is a platform aimed to isolate and communicate the applications that are developed to exploit the information
generated from the ground by the layer of sensors deployed across to collect and broadcast this information.

Its main modules are:

• Restful API

• Web Application which provides an administration console and some public visualizers

• Data publication & subscription system

• A memory database for storing real time data

• A non-SQL database for storing less volatile data, like the sensor’s catalog

• Several agents which extend the platform features

4.1 Key Concepts

This section describes the main concepts of Sentilo. Many of these concepts are discussed later deeply.

You can read also some Technical FAQs.

4.1.1 PubSub Platform

Sentilo allows customers to publish and retrieve information and to subscribe to system events. This module is a
stand-alone Java process that uses Redis as a publish/subscribe mechanism.

The different types of information considered are:

• observations

• alarms

• orders

75

./technical_faq.html

Sentilo Documentation, Release 1.9.0

Please, check this out fore more info.

4.1.2 RealTime storage

Redis is the primary repository where the platform stores all the information received. It is configured to do periodic
backups in the file system. It is also the Publish/Subscribe engine.

4.1.3 REST API

The client’s communication with publish/subscription mechanism is made using the REST API provided by the plat-
form.

Services offered by the API can be classified into five main groups:

• data: provides operations to publish, retrieve, delete data.

• order: provides operations to publish, retrieve, delete orders.

• alarm: provides operations to publish, retrieve, delete alarms.

• subscribe: provides operations to subscribe, retrieve and cancel subscriptions.

• catalog: provides operations to insert, update, query and delete catalog resources (sensors, components and
alerts).

By default, the information is transmitted using JSON format. Please, check this out fore more info.

4.1.4 Agents

Agents are Java processes that expand the core functionality of the platform through a Plug & Play system using the
Redis publish and subscribe mechanism.

Sentilo currently provides several agents, for example:

• Relational database agent: used to export historical data to a relational database.

• Alert agent: used for processing each data received by the platform and validate it with the business rules
configured in the catalog.

• Activity Monitor Agent: used for upload the events to Elasticsearch.

• Historian Agent: used for upload the events to OpenTSDB.

See the complete list here: Sentilo Agents

4.1.5 Authentication Token

The invocation of different REST API services is secured using an authentication token. This token must be sent
in every request as a header parameter of the HTTP request named IDENTITY_KEY. This token is unique for each
provider or client application, and is managed by the catalog application.

Please, check this out fore more info.

76 Chapter 4. Architecture

./api_docs/services/subscription/subscription.html
./api_docs/web_home.html
./integrations.html#agents
./integrations.html#agents
./api_docs/security.html

Sentilo Documentation, Release 1.9.0

4.1.6 Permission

Permissions allow Sentilo to identify the requester and to ensure that who makes a request is authorized to do it. Per-
missions are managed by the catalog web app and allow to configure read or write permissions to client application on
third party resources (provider or client applications). By default, every platform entity has read and write permissions
on its own resources.

Please, check this out fore more info.

4.1.7 Notification mechanism

Sentilo provides two mechanisms for notifying events:

• If the client is capable of having an opened socket, the platform will send a notification to this socket every time
an event is triggered (push).

• If the client cannot have an opened socket, then it must be doing periodic requests (polling) to the platform to
retrieve last events.

4.1.8 Catalog

The Web Application Platform console allows to manage the following resources: providers, applications, compo-
nents, sensors, sensors types, component types, alerts and users.

It also provides a public console for displaying components and sensors registered in the platform as well as the data
that has been received.

Please, check this out fore more info.

4.1.9 Alert

Sentilo allows to manage sensor-level internal alerts, aimed to control the validity of the data received. The set of
conditional operators available are: >, >=, <, <=, =, any change, variation, frozen. When the value received from a
sensor doesn’t met any of the conditions defined, the alert agent publishes an event (alarm) notifying it. These alerts
are defined through the console. There are also external alerts which can be defined and triggered externally though
the API.

4.2 Platform architecture

The following diagram describes the Sentilo platform:

4.2. Platform architecture 77

./api_docs/security.hml
./api_docs/services/subscription/subscription.html
./api_docs/services/data/data.html
./catalog_and_maps.html
./catalog_and_maps.html
./api_docs/services/alert/create_alerts.html

Sentilo Documentation, Release 1.9.0

4.2.1 PubSub Server

PubSub Server is a stand-alone java application whose design is divided into two layers:

• Transport Layer: designed following the Thread Pool pattern: http://en.wikipedia.org/wiki/Thread_pool_pattern

• Service Layer: Based in Spring and Redis, it’s designed to provide high performance rates.

78 Chapter 4. Architecture

http://en.wikipedia.org/wiki/Thread_pool_pattern

Sentilo Documentation, Release 1.9.0

Transport Layer

The transport layer is designed following the Thread Pool pattern and is implemented with Apache HttpCore library.

The following diagram shows the main flow for a request within this layer:

• The client sends a Http request to the REST platform

• The server accepts and queues it on the list of pending requests

• When a Worker is available, a pending task is assigned to it for processing (removing it from the queue)

– delegates the request to an element of the service layer

– and constructs the HTTP response from the information received

• Send the response to client’s request

The values of the job queue and the workers’ pool are fully configurable via properties file, for easily adjust to the load
requirements of each environment:

<bean id="ThreadPool" class="org.sentilo.platform.server.pool.ThreadPool"
p:initialCapacity="${thread.pool.capacity.initial}"
p:maxCapacity="${thread.pool.capacity.max}"
p:shutdownSecondsTimeout="${thread.pool.shutdown.timeout.seconds}"
p:QUEUESIZE="${thread.pool.queue.size}"
p:groupId="${thread.pool.group.id}"
p:groupName="${thread.pool.group.name}" />

4.2. Platform architecture 79

Sentilo Documentation, Release 1.9.0

thread.pool.queue.size=100
thread.pool.capacity.initial=4
thread.pool.capacity.max=10

Service Layer

The design of this layer has the main premise of minimizing the request processing time, so all the main job is held
in memory(Redis). Redis stores data in a memory database but also has the possibility of disk storage to ensure the
durability of the data.

The following diagram shows the main flow for a request within this layer:

NOTE: (*) Executed asynchronously to the main process.

• The Worker delegates the request to the associated handler depending on the type of request (data, order, alarm,
. . .)

• The following validations are performed on each request:

– (2a) Integrity of credential: checks the received token sent in the header using the internal database in
memory containing all active credentials in the system.

– (2b) Authorization to carry out the request: validate that the requested action can be done according to the
permission database.

– the validity of the request parameters: mainly, structure and typology.

80 Chapter 4. Architecture

Sentilo Documentation, Release 1.9.0

• After that:

– stores the data in Redis (in memory)

– and depending on the type of data

* (3a) publish the data through publish mechanism

* (3b) or register of the subscription in the ListenerMessageContainer

• Redis is responsible for sending the published information to ListenerMessageContainer event, who is respon-
sible for managing the subscription in Redis as a client for any type of event.

• The container notifies the event to each subscription associated with it sending a request, via HttpCallback

The platform registers a task that runs periodically who is responsible for credentials & permissions synchronization,
stored in memory in server (A). These data is retrieved from the catalog application. This will maintain anytime an
exact copy of these values in memory and allows to check credentials and permissions instantly.

Finally, access to Redis is done through a connection pool fully configurable through properties file, which allows you
to adjust to the specifics of each environment.

<bean id="jedisPoolConfig" class="redis.clients.jedis.JedisPoolConfig"
p:maxActive="${jedis.config.maxactive}"
p:maxIdle="${jedis.config.maxidle}"
p:maxWait="${jedis.config.maxwait}"
p:testOnBorrow="true"
p:whenExhaustedAction="1"/>

jedis.config.maxactive=50
jedis.config.maxidle=50
jedis.config.maxwait=50

Comments

• This design allows system scalability both vertically and horizontally:

– vertically: increasing the boundaries of work queue & workers.

– horizontally: distributing the load across multiple instances or server nodes.

• It also reduce response time because the process is carried out in memory.

4.2.2 Catalog application

The catalog application platform is a web application built with Spring on the server side (Spring MVC, Spring
Security, ..) using jQuery and bootstrap as presentation layer and MongoDB as data storage database.

This webapp consists of:

• a public console for displaying public data of components and sensors and their data

• a secured part for resources management: providers, client apps, sensors, components, alerts, permissions, . . .

It is fully integrated with the Publish/Subscribe platform for data synchronization:

• permission and authentication data

• register statistical data and the latest data received for showing it in different graphs of the Web application.

4.2. Platform architecture 81

Sentilo Documentation, Release 1.9.0

82 Chapter 4. Architecture

CHAPTER 5

Integrations

5.1 Agents

Agents are internal modules oriented to expand its functionality without having to alter its core. The installation is
based on the principle of Plug & Play: they are recognized by the system and started automatically to be up and
running.

Every agent is a process that acts as a subscriber for the publish/subscribe platform. These processes will subscribe
directly to Redis as a independent clients. This subscription will provide the input data to do the underlying business
logic (store in a relational database, process alarms, generate statistics, . . .)

The following diagram shows the design that every agent should follow:

83

Sentilo Documentation, Release 1.9.0

1. When agent is started, it subscribes as client to Redis for the event that wants to receive notifications.

2. When Redis receives a publication of any of these data, the agent is automatically notified with a new message.

3. The message is processed and transferred to the corresponding agent’s service responsible to carry out the
underlying business logic.

As mentioned above, Sentilo currently provides two agents:

5.1.1 Relational database agent

This agent stores all information received from PubSub platform into a set of relational databases (the number of
relational databases is fully configurable). It could be configured to filter the data to store according to a business rules
through a configuration file.

To do this, when the agent is started it makes a subscription to the desired information in Redis (observations, orders
and/or alarms), that has previously been defined in a properties file:

//In this example we indicate to persist any data using a DataSource with srDs
→˓identifier,
//and also to store any data from provider with PARKING identifier,
//on a different DataSource whose identifier is parkingDs.

//Finally, we can indicate more than one DataSource destination to persist the same
→˓data.

(continues on next page)

84 Chapter 5. Integrations

Sentilo Documentation, Release 1.9.0

(continued from previous page)

data\:PARKING*=parkingDs
data\:*=srDs
order\:*=srDs
alarm\:*=srDs,parkingDs

It is imperative that the DataSources are defined in the context of the agent with the same identifier:

<bean id="srDs" class="org.apache.commons.dbcp.BasicDataSource"
destroy-method="close">
...

</bean>

<bean id="parkingDs" class="org.apache.commons.dbcp.BasicDataSource"
destroy-method="close">

...
</bean>

This context is defined in the file:

sentilo-agent-relational/src/main/resources/spring/relational-persistence-context.xml

5.1.2 Alarm agent

This agent processes each internal alert defined in the catalog and publish a notification (a.k.a. alarm) when any of the
configured integrity rules are not met.

Due to the type of available rules, this validation process integrity is divided into two threads:

• An internal process that runs every minute, evaluates the status of each sensor that have associated (frozen type)
alerts.

• Additionally, each time a Redis notification is received, alerts associated with the data received are evaluated.

Finally, an internal process regularly synchronize the alert list, to synchronize the information stored in memory with
the catalog repository.

5.1.3 Activity Monitor agent

Background on Activity Monitor Agent

Sentilo is a publication-subscription platform. The amount of data held in the system is proportional to Redis deploy-
ment and directly depends on the amount of physical memory available for the Redis server. In another words, the
data has to be probably deleted after a certain amount of time to free the Redis memory. For example, in the Barcelona
deployment, the data is deleted after approximately one week.

Additionally to data expiration, Sentilo does not provide many dashboards and those dashboards are not customizable.

In order to fill the gap of historization and dashboards, we use Elasticsearch and Kibana. Elasticsearch is a powerful
Java-based fulltext search database with REST API. It is frequently used together with it’s modules, Kibana for dash-
boards and Logstash for collecting of logs. The combination of Elasticsearch, Logstash and Kibana is often called
the ELK stack. ELK provides a comfortable way to store and exploit historical information, and also a near-realtime
monitoring of the platform. Note that Elasticsearch behaves excellently in cluster mode.

Sentilo events are uploaded to Elasticsearch through a Sentilo agent called Activity Monitor Agent. The configuration
of this agent is described further in this chapter.

5.1. Agents 85

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/kibana

Sentilo Documentation, Release 1.9.0

The following image illustrates a possible setup of Sentilo with ELK stack. Logstash is optional and can be used
e.g. for monitoring of Sentilo logs (like login errors, invalid messages etc.), as well as monitoring of system resources.

The setup of the ELK stack is well documented and beyond the scope of this page.

Configuration

Activity Monitor Agent is configured with a set of .properties files in sentilo/
sentilo-agent-activity-monitor/src/main/resources/properties.

subscription.properties

monitor-config.properties

Prop-
erty

Description Comments

elastic-
search.url

URL of the ES in-
stance

batch.size How many evens
are sent to ES at
once.

Every HTTP request consumes certain amount of resources, thus is convenient
to use a ES bulk API. The agent won’t send events to ES until batch.size events
occurred.

batch.workers.sizeNumber of threads
the agent

Determines how many parallel threads communicate with ES.

batch.max.retriesNumber of retries
when ES is unavail-
able

Number of intents for upload to ES instance.

The agent will create index(es) called sentilo-YYYY-MM.

Configuration of Elasticsearch, Logstash and Kibana is beyond the scope of this document and can be easily followed
on their respective web pages.

Compatible versions

Sentilo has been successfully used in with these versions of ELK (which does not mean other versions shouldn’t work
as well):

• ELK 5+

86 Chapter 5. Integrations

Sentilo Documentation, Release 1.9.0

5.1.4 Historian agent

Background on Historian Agent

As you already might have learned, Sentilo does not persist data forever because of limited system resources.

Commonly used setup of a Sentilo instance is to employ one of the agents to copy the data into some external database
or storage.

Since the data volumes can be fairly big and the data are mostly structured (except when the observations are text), it
is convenient to use a scalable solution for time series such as OpenTSDB.

OpenTSDB installs of top of HBase and HDFS. Exposes a HTTP REST API and can be used from Grafana as one of
it’s data sources.

Configuration

Historian Agent is configured with a set of .properties files in sentilo/sentilo-agent-historian/src/
main/resources/properties.

subscription.properties

monitor-config.properties

Prop-
erty

Description Comments

opentsdb.urlURL of the
OpenTSDB instance

batch.size How many evens are
sent to OpenTSDB at
once.

Every HTTP request consumes certain amount of resources, thus is convenient
to use a OpenTSDB bulk API. The agent won’t send events to OpenTSDB until
batch.size events occurred.

batch.workers.sizeNumber of threads
the agent

Determines how many parallel threads communicate with OpenTSDB.

batch.max.retriesNumber of retries
when OpenTSDB is
unavailable

Number of intents for upload to OpenTSDB instance.

Configuration of HDFS, HBase, OpenTSDB and is beyond the scope of this document and can be easily followed on
their respective web pages.

Compatible versions

Sentilo has been successfully used in with these versions:

• Hadoop 2.7.2

• HBase 1.2.1

• Opentsdb 2.2.0, 2.3.0

• Grafana 3 +

5.1.5 Federation agent

Description

The federation agent is a module that permits to share events between two independent instances of Sentilo. The
sharing is unilateral - one Sentilo instance is emitting events and the other is receiving. The agent is installed at the
side of the receiving instance:

5.1. Agents 87

http://opentsdb.net/
http://grafana.org/

Sentilo Documentation, Release 1.9.0

The administrator of the emitting Sentilo instance only needs to create a new application and provide the token the
administrator of the receiving instance. As with any Sentilo application, the administrator is in control of which
provider’s data are readable by the remote federation agent.

Providers, components and sensors are created automatically in the catalog of the receiving instance by the federation
agent. The agent uses its application token to query the emitting catalog API to obtain remote objects, and uses the
local catalog application id to replicate the locally.

The federation agent creates subscriptions on data it has permission. It creates a HTTP endpoint and tells the emitting
instance to forward the events to this endpoint URL.

Configuration

Federation Agent’s configuration is in file sentilo/sentilo-agent-federation/src/main/
resources/properties/application.properties.

Further configuration of the agent is available in the “Federation services” menu.

The menu is available when running Tomcat with the option:

-Dsentilo.federation.enabled=true

The “Client application token” input is the token created in the emitting Sentilo instance:

88 Chapter 5. Integrations

Sentilo Documentation, Release 1.9.0

5.1.6 Kafka agent

Description

The Kafka agent publishes Sentilo events to Kafka.

Configuration

5.1. Agents 89

Sentilo Documentation, Release 1.9.0

Prop-
erty

De-
fault
Value

Description

kafka.bootstrap.serverslo-
cal-
host:9092

Comma-separated list of Kafka brokers

zookeeper.nodeslo-
cal-
host:2181

Comma-separated list of Zookeeper nodes

batch.workers.size10 Number of worker threads
batch.max.retries1 How many times will the agent try to resend the message to Kafka until it gives up
kafka.request.timeout.ms30000
kafka.linger.ms100 Milliseconds before the contents of buffer are sent or until batch fills up, whichever comes first.
kafka.batch.size20000 Number of bytes of internal buffer. If the size fills up before , contents are sent to Kafka, .

Otherwise contents are sent once kafka.linger.ms passed.
kafka.topicPrefixsen-

tilo
Topics in Kafka will start with following prefix. May be left blank

kafka.topicSeparator. The compound name of topic in Kafka will be separated with this string.
kafka.topicNameModetop-

icPerSen-
sor

Possible values of topicNameMode for the “data” event type: * topicPerSensor: sen-
tilo.data.providerName.sensorName * topicPerProvider: sentilo.data.providerName * top-
icPerSensorType: sentilo.data.temperature * topicPerMessageType: sentilo.data * singleTopic:
sentilo

Compatible versions

Sentilo has been successfully used in with these versions:

• Kafka 0.11.0

• Kafka 0.10.2

5.1.7 Metrics Monitor Agent

The agent persists internal Sentilo metrics, such as memory usage or number of threads and persists them in Elastic-
search.

Elasticsearch template definition for this agent is located in /sentilo-agent-metrics-monitor/src/
main/resources/elasticsearch. The template name is sentilo-metrics and the index pattern created by
the agent is sentilo-metrics*.

The configuration /sentilo/sentilo-agent-metrics-monitor/src/main/resources/
properties/monitor-config.properties and it’s same as for the Activity Monitor Agent. Example
configuration:

Endpoint for elasticsearch elasticsearch.url=http://localhost:9200

Properties to configure the index process batch.size=1 batch.workers.size=3 batch.max.retries=1

The difference with the Activity Monitor agent is the Redis topic in subscription.properties:

batch.max.retries=/metrics/*

90 Chapter 5. Integrations

Sentilo Documentation, Release 1.9.0

5.2 Clients

5.2.1 Node-red

Node-RED is a visual programming platform ideal for non-complex integrations and prototyping.

Sentilo plugin is available in Node-RED’s marketplace. Simply search for “sentilo” in Palette configuration:

Following nodes should appear in the nodes palette:

Now, you should be able to use Sentilo from Node-RED. For example:

5.2. Clients 91

https://nodered.org

Sentilo Documentation, Release 1.9.0

The package contains documentation on how to use Sentilo nodes. More info at the ‘Sentilo library page at Node-
RED website https://flows.nodered.org/node/node-red-contrib-sentilo‘__.

5.2.2 NodeJS

We provide a Node.js client library that facilitate access to the Sentilo API. The library is no yet a npm package, but
you can still use easily. Lastest version of this library is tested with Node 10 and 12.

More information is in this repository: https://github.com/sentilo/sentilo-client-nodejs

There is also a tutorial on how to use this library with Raspberry Pi and GPIO with javascript.

5.2.3 Java Client

Sentilo platform includes a Maven artifact sentilo-platform-client-java. Its source code is here. This
library is used internally by Sentilo and its agents.

You can check the tutorial of ‘how to create creating sample web application /tutori-
als/java_client_tutorial.html‘__. The example uses Spring MVC and can be deployed on a Tomcat. The
code of this tutorial is available at https://github.com/sentilo/sentilo-client-sample-java .

Regardless of the example, the library can be used in any Java application. Its dependencies are tiny and is framework-
agnostic.

92 Chapter 5. Integrations

https://github.com/sentilo/sentilo-client-nodejs
https://nodejs.org/es/
https://github.com/sentilo/sentilo-client-nodejs
./tutorials/raspberrypi_tutorial.html
https://github.com/sentilo/sentilo/tree/master/sentilo-platform-client-java
https://github.com/sentilo/sentilo-client-sample-java

Sentilo Documentation, Release 1.9.0

5.2.4 Arduino

Arduino client HTTP Request library is available here: https://github.com/sentilo/sentilo-client-arduino

There’s also a tutorial on Arduino with Sentilo. The source code for the tutorial is available here: https://github.com/
sentilo/sentilo-client-arduino

5.3 Cloud

5.3.1 AWS S3

The AWS S3 can be used together with Sentilo, if your solution needs to upload files such as audio snippets, images
or files in general.

Sensor can publish links to multimedia files. If these links are always public, catalog will preview them without any
additional configuration.

If these media links are private and managed by S3, catalog needs these properties in the file catalog-config.
properties:

Note: Sentilo is is currently using path-style API requests.

Note: Sentilo is probably compatible with variety of S3-like platforms on the market that implement the S3 interface.

In the end, you will be able to visualize private links in S3, for example:

5.3. Cloud 93

https://github.com/sentilo/sentilo-client-arduino
https://github.com/sentilo/sentilo-client-arduino
/tutorials/arduino_tutorial.html
https://github.com/sentilo/sentilo-client-arduino
https://github.com/sentilo/sentilo-client-arduino
https://aws.amazon.com/s3/

Sentilo Documentation, Release 1.9.0

see more

94 Chapter 5. Integrations

./services/subscription/subscription.html

CHAPTER 6

Catalog and Maps

The Catalog is a web application that enables you to administer, rule and monitor the Sentilo platform resources and
activity. In this section, you will learn how to manage Sentilo resources and how to monitor its activity.

Contents:

6.1 Map Viewers

In the publicly accessible section of the Catalog, Sentilo offers two different map viewers that display data in real-time,
as they are being published in the system.

Both viewers are accessible from the Explore item at the top menu bar (Universal viewer and Route viewer).

6.1.1 Universal viewer

Components map

The catalog provides a default map, based on Google Maps, which shows all the public components registered at the
platform. If the user is logged as administrator, all the private components will be displayed as well.

95

Sentilo Documentation, Release 1.9.0

On this page, you can filter the components to show by selecting a component type from the top left select.

Depending on the zoom level, the map will display the elements as individuals POIs or grouped in clusters, showing
the number of components in each group.

96 Chapter 6. Catalog and Maps

Sentilo Documentation, Release 1.9.0

Component details

Sensors list

When you select a component, a popup window is opened above the map and displays the list of sensors related to it
with the last activity for each one of them (as noted above, the private sensors will be displayed only for logged users):

6.1. Map Viewers 97

Sentilo Documentation, Release 1.9.0

Sensors last activity view

If you click into the content area of the popup window, a new page is open displaying some basic details about the
component, and a time-series graph with the last activity of each of its sensors:

98 Chapter 6. Catalog and Maps

Sentilo Documentation, Release 1.9.0

You may also click the bottom-right corner icon and get a page with bigger detail. The URL of this page is
shareable, i.e. it is possible to send it by email.

Navigate the last data chart

You can navigate along the dates of the graph by using the buttons located in the lower right corner of it:

• left arrow: navigate to the past (only if there are older data)

• reload data (center button): reload last data / reset chart data

• right arrow: navigate to the future (only if you have navigated or gone into the past before)

Displaying complex data

In some cases, you may want to inform complex data as an observation on Sentilo, such like a large json object. For
these cases, Sentilo will detect that the text is a json object and then it will be shown to you as a prettify json value:

6.1. Map Viewers 99

Sentilo Documentation, Release 1.9.0

You can expand or compress the prettified json with the bottom buttons under the status field,

6.1.2 Route viewer

As the name suggest, the route viewer is a specific map that shows the routes followed by the mobile components
(keep in mind that only the last 20 points are displayed for each route):

The same features described previously apply on this map and its markers (popup window, . . .), but with the particu-
larity that if you click over a route point then the popup window displays sensor activity related to the time instant in

100 Chapter 6. Catalog and Maps

Sentilo Documentation, Release 1.9.0

which component was at that location.

6.1.3 Background map configuration

Center and Zoom

Each Organization can have it’s own map center and zoom level. Please refer to corresponding part in the Administra-
tion Console section: Organization Map configuration

Map Providers

For all background maps, you can use either Google or Leaflet map provider. Through the latter you can consume any
OGC WMS/WMTS service that provides a EPSG 3857 SRID.

The configuration of both is in in /sentilo-catalog-web/src/main/resources/properties/
catalog-config.properties.

6.1. Map Viewers 101

../administration_console.html#map-configuration

Sentilo Documentation, Release 1.9.0

Example of Google Maps configuration

catalog.map.provider=gmaps
catalog.map.google.key=AIza...

Example of Leaflet maps configuration, using a public Terrestris WMS service:

catalog.map.provider=leaflet
catalog.map.wms.url=https://ows.terrestris.de/osm/service?
catalog.map.wms.layers=OSM-WMS
catalog.map.wms.version=1.3.0
catalog.map.wms.format=image/jpeg
catalog.map.wms.attribution=Terrestris
catalog.map.wms.styles=

Note: If you insert multiple layers in the catalog.map.wms.layers property, a layer selector in the bottom-right corner
of the map will appear.

6.2 Administration console

The administration console is composed of several CRUDs used to maintain all the entities of the Catalog such as
providers, components, sensors, users, . . . Only registered users can access it, so you must be logged before starting
to manage the Catalog (the login access is located at the top right menu bar). Remember that, by default, the admin
user has admin/1234 as access credentials.

All admin pages follow the same structure and layout for ease of use and to facilitate future maintenance. Therefore,
below there is only a brief description of each admin page rather than to repeat the same things over and over in every
section. In these sections will focus only on the particularities of each one.

When you select any option of the menu admin, the first page that you will see will be a list with the resources of
this type already registered on the Catalog. These lists are very intuitive and extremely easy-to-use: you could filter,

102 Chapter 6. Catalog and Maps

Sentilo Documentation, Release 1.9.0

page and order it. You could delete an existing resource selecting the corresponding checkbox and clicking the Delete
selected button; you could add new resources selecting the corresponding button and you could edit anyone clicking
over the corresponding row.

When you select to add a new resource, a traditional form page is displayed. Here, you must have filled in the
mandatory fields before clicking the Save button. If some mandatory field is not filed in or it have a no valid value, the
page shows you information about what is wrong:

Otherwise, the resource will be registered into the Catalog and you will be redirect to the list page (at the top right
corner you will see a confirmation message that the resource have been successfully created):

6.2. Administration console 103

Sentilo Documentation, Release 1.9.0

The same applies when you try to delete a resource, but with the peculiarity that the browser will always ask for your
confirmation before deleting it:

If the resource has been successfully removed, the list is reloaded and a confirmation message is displayed at the top
right corner:

Otherwise, you will see an error page with a description about what is wrong. For example, if you try to delete a
component type that is associated with an existing component the response will be :

104 Chapter 6. Catalog and Maps

Sentilo Documentation, Release 1.9.0

6.2.1 Organization

The organization is the entity that describes the Sentilo instance.

Detail

By default, this organization is created and its identifier is sentilo.

We can also edit the organization’s name other contact details, except the.

Config params

In addition, we can edit the visualization formats and public map settings, using the Config params tab:

6.2. Administration console 105

Sentilo Documentation, Release 1.9.0

There we can configure the Visual configuration and the Map configuration.

Visual configuration

These params will apply to the entire catalog application visual customization, and how the user will see the data.
Note that time zone & date format are directly relationated.

Prop-
erty

Description Comments

Time
zone

Defines the time zone of the organiza-
tion, and modifies the way to display
data on screen, such as dates

You can define hourly difference or time zone abbreviations:
CET, UTC, +001. . .

Date
format

Defines the date format with which the
data will be displayed in the application
(lists, details. . .)

Example: dd/MM/yyyy HH:mm:ss = 30/11/2017 15:34:56
See all possible formats as Java Date Format, at: Java Date
Format

Chart
values
number

Number of observations displayed on
chart

It must be a positive integer number greater or equals to 10.
If blank, it will be a default value of 10. This value will be
overwritten by sensor’s configuration one.

Map configuration

These params configure the universal map visualization.

106 Chapter 6. Catalog and Maps

https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html

Sentilo Documentation, Release 1.9.0

Property Description Comments
Zoom
level

Zoom level of the univer-
sal map

Default value is 14. And you can define a value between 1 and 20.
See possible values in: https://developers.go ogle.com/maps/documen
tation/static-maps/in tro#Zoomlevels

Latitude
/ Longi-
tude

Defines the map center in
latitude & longitude val-
ues format

Map
back-
ground
color

Define the background
color of the map

Possible values applies with the colorpicker, or input a valid css / html
color value

For example, set the map background color to #ffc900:

will result in:

6.2. Administration console 107

https://developers.go

Sentilo Documentation, Release 1.9.0

6.2.2 Users

The “Users” section is for managing users of the catalog application. It’s possible to A catalog user can be one of
these three roles:

• Admin: role for administration purposes.

• Platform: platform role for internal use.

• User: visualisation role, they could access to the administration console and read all the data, but they haven’t
permission for changing anything, except own contact details and password.

Note: A non-admin account will only see a menu “User” with his/her own details. A User role cannot see list other
users.

User properties editable by administrator

108 Chapter 6. Catalog and Maps

Sentilo Documentation, Release 1.9.0

Id Name Description
Id User identifier After its creation can’t be modified
Password Password Admin user can rewrite user’s password
Repeat Password check
Name User name
Description Description
Creation date Creation date Automatically generated
Update date Last update date Automatically generated
E-Mail User e-mail
Active Checkbox for removing access
Role Related role Value list

Edit a User

Note: A password has to have 8-10 characters, and have at least 1 uppercase, 1 lowercase and 1 digit.

6.2.3 Applications

Applications are the data clients of the Sentilo platform and, by default, if you have loaded the default data, you will
see two applications registered into the Catalog:

• sentilo-catalog: it is a internal application, used by the catalog to make calls to the API REST and therefore
MUST NOT be removed.

• testApp: as the name suggest, this application is used for testing the platform status.

6.2. Administration console 109

Sentilo Documentation, Release 1.9.0

List

Access the Application list. This is the main Application page. From here you’ll can access to the desired application
to show its details by click on it.

You’ll be able to list, filter, show application details, create (New application button) and delete selected applications
(select from left checkbox, and apply by Delete selected button).

Further, you’ll be able to export the list to Excel, by clicking on Export to Excel button. The result file will contain the
list columns and a number of extra ones from internal database use.

Use the button panel at the bottom right to navigate through the list (first page, previous page, page number, next page
and last page, respectively).

Details tab

The detail page is structured into three tabs:

110 Chapter 6. Catalog and Maps

Sentilo Documentation, Release 1.9.0

where:

• the Details tab contains the main properties of the application (described below).

• the Permissionstab allows to manage the permissions for other entities (applications or providers)

• the Active subscriptions tab displays a list with all the active subscriptions for the current application.

The main properties of the Details tab are the following:

6.2. Administration console 111

Sentilo Documentation, Release 1.9.0

Property Description Comments
Id Application Identifier Mandatory. After its creation it

can’t be modified. It is the identifier
used in the API calls.

Name Display name If not filled in by the user, its default
value will be the Id.

Token Access key Automatically generated by the sys-
tem when application is created. It
is theidentity_key value used in the
API calls. NOTE: only users with
ADMIN role will show the entire to-
ken chain, other user roles only will
see obfuscated text at this place (see
below)

Description Description Optional. The application descrip-
tion text.

HTTPS API REST Application accepts data over
HTTPS

The Sentilo Server itself does not
support SSL at the moment, how-
ever you can put a reverse proxy
such as Nginx in front of the Sentilo
Server. If this option is checked, the
Sentilo Server expects the standard
header
X-Forwarded-Proto

Please note that when configuring
Nginx, you should also use the pa-
rameter
underscores_in_hea
ders on;

so Nginx would forward sentilo
headers to the Sentilo Server.

Contact email Email address of the person respon-
sible for the application

Mandatory.

How users that has not ADMIN role see the detail section:

112 Chapter 6. Catalog and Maps

Sentilo Documentation, Release 1.9.0

Permissions tab

As commented before, the Permissions tab allows you to define and manage the authorization privileges that are
granted to an application (such privileges are named permissions) which are required for access to the data from other
entities.

There are 3 possibles permissions:

• Read: Only allows to read the data but not modify it (e.g. cannot publish orders to sensors/actuators).

• Read-Write: allows to read and write data over the resources of an entity, but not administer them (e.g.. cannot
create new sensors for a provider)

• Administration: full control over an entity and its resources.

By default, the application sentilo-catalog has granted the Administration permission over all entities registered
into Catalog and, as you would expect, an application has full control over itself .

For example, at the following case where the permissions of the application testApp are displayed:

We will see the following:

• The application testApp could administer the entity testApp (obviously!)

• The application testApp could read any data from the entity testApp_provider.

Active subscriptions tab

This tab allows you to inspect the subscriptions that an application has registered on the platform (remember that
subscriptions are [created with the API REST](./api_docs/services/subscription/subscription.html)), as shown in the
following picture:

6.2. Administration console 113

Sentilo Documentation, Release 1.9.0

6.2.4 Providers

In Sentilo, providers are those who send data, i.e. those who publish the data (in contrast to applications, which
consume the data). If you have loaded the default data, you will see one default provider registered into the Catalog:

• testApp_provider: as the name suggests, this provider is used for checking platform status.

One singularity of the providers list is the Delete action: if you remove a provider, not only the provider will be
deleted from the backend, but also all its related resources such as components, sensors, alerts . . . and any data
published by its sensors, so be very careful with this command.

List

Access the Providers list. This is the main Provider page. From here you’ll can access to the desired provider to show
its details by click on it.

114 Chapter 6. Catalog and Maps

Sentilo Documentation, Release 1.9.0

You’ll be able to list, filter, show provider details, create (New provider button) and delete selected providers (select
from left checkbox, and apply by Delete selected button).

Further, you’ll be able to export the list to Excel, by clicking on Export to Excel button. The result file will contain the
list columns and a number of extra ones from internal database use.

Use the button panel at the bottom right to navigate through the list (first page,
→˓previous page, page number, next page and last page, respectively).

Details tab

The detail page of a provider is structured into five tabs:

where

6.2. Administration console 115

Sentilo Documentation, Release 1.9.0

• The Details tab contains the main properties of the provider (described below).

• The Sensors/Actuators tab displays a list with all sensors owned by the current provider (i.e. associated with this
provider).

• The Components tab displays a list with all components owned by the current provider.

• The Active subscriptions tab displays a list with all the active subscriptions for the current provider.

• The Documentation In this tab you can upload any files relevant to provider, such as a maintenance guide, etc.

The main properties of the Details tab are the following:

Property Description Comments
Identifier Provider identifier Mandatory. After its creation can’t

be modified. It is the identifier used
in the API calls.

Name Display name If not filled in by the user, its default
value will be the Id.

Authorization Token Access key Automatically generated by the sys-
tem when application is created. It
is the* identity_key* value used in
the API calls. NOTE: only users
with ADMIN role will show the en-
tire token chain, other user roles
only will see obfuscated text at this
place (see below)

Description Description Optional. The provider description
text.

HTTPS API REST Provider sends data over HTTPS The Sentilo Server itself does not
support SSL at the moment, how-
ever you can put a reverse proxy
such as Nginx in front of the Sentilo
Server. If this option is checked, the
Sentilo Server expects the standard
header
X-Forwarded-Proto

Please note that when configuring
Nginx, you should also use the pa-
rameter
underscores_in_hea
ders on;

so Nginx would forward sentilo
headers to the Sentilo Server.

Contact name Name of the person responsible for
the provider

Mandatory

Contact email Email address of the person respon-
sible for the application

Mandatory.

How users that has not ADMIN role see the detail section:

116 Chapter 6. Catalog and Maps

Sentilo Documentation, Release 1.9.0

Sensors/Actuators tab

As mentioned before, this tab displays a list with all sensors associated with the current provider, as shown in the
picture below where the sensors of the provider CINERGIA are listed:

You could filter, page and order the list but you cannot access to the sensor detail: it must be done from the sensor list
administration.

6.2. Administration console 117

Sentilo Documentation, Release 1.9.0

Components tab

As explained early, this list is very similar to the previous one but with components.

Active subscriptions tab

The meaning of this tab is the same as described for the applications.

Documentation tab

In this tab you can upload any files relevant to provider (up to 4MB each). The documents in total should not surpass
~16MB, which the limit of MongoDb.

6.2.5 Components

Within the context of Sentilo, components have a special meaning: they are not linked to the API REST (except for
the catalog service), i.e., components are not required to publish or read data. We use components in Catalog to group
together sensors sharing a set of properties, such as location, provider, power or connectivity.

You could think of them as physical devices with a set of sensors, like a weather station or a microcontroller, with
multiple sensors connected. But not necessarily a component needs to have sensors physically connected to it. A
gateway could also be modeled as a component: you could have a wireless sensor network (WSN) where each sensor
sends data to a gateway and then it sends data to Sentilo using its Ethernet/WiFi/.. connection . In this case, the
gateway will also be a component. And finally, if you have a sensor that connects to Sentilo directly then you will have
a component with only one sensor.

In short: in Sentilo, a sensor always need to be related to a component and providers have its sensors grouped by
components, as shown in the following picture:

List

One singularity of the components list page are the two buttons that allows us to change the visibility of a set of
components from public to private and vice versa. These buttons apply on the selected rows.

118 Chapter 6. Catalog and Maps

https://docs.mongodb.com/manual/reference/limits
./api_docs/services/catalog/catalog.html
http://en.wikipedia.org/wiki/Wireless_sensor_network

Sentilo Documentation, Release 1.9.0

You’ll be able to list, filter, show components details and create (New component button). Like with the providers list,
the component list have a Delete button that works as follows:* if you remove a component, not only the component
will be deleted from the backend, but also all its related resources will be deleted* such as sensors, alerts . . . and any
data published by its sensors, so be very careful with this command.

Further, you’ll be able to export the list to Excel, by clicking on Export to Excel button. The result file will contain the
list columns and a number of extra ones from internal database use.

Use the button panel at the bottom right to navigate through the list (first page,
→˓previous page, page number, next page and last page, respectively).

Details tab

The detail page of a component is structured into five tabs:

6.2. Administration console 119

Sentilo Documentation, Release 1.9.0

where:

• The Details tab displays the main properties of the component.

• The Technical details tab displays several categorized properties of the component.

• The Additional information tab displays custom properties of the component which are not predefined by Sen-
tilo. See the parameter additionalInfo of the API docs

• The Related components tab shows other components linked with the current component .

• The Sensors/Actuators tab shows the sensor element located in the current component.

The main properties of the Details tab are the following:

120 Chapter 6. Catalog and Maps

./api_docs/services/catalog/create_sensors.html#parameters

Sentilo Documentation, Release 1.9.0

Prop-
erty

Description Comments

Name Display name Mandatory. After its creation can’t be modified. It is the identifier
used in the API calls.

Type Component type. Mandatory. Select from a list of available types.
De-
scrip-
tion

Description Optional. The component description text.

Provider Component owner Mandatory.
Photo URL of the component photogra-

phy
It could be defined for each component or it will be inherited using
the defined one for the component type.

Access
type

Checkbox to set the component
visibility as public or private in
the viewer

Cre-
ation
date

Creation date Automatically generated

Update
date

Last update date Automatically generated

Tags Related custom tags of the com-
ponent

Are displayed at the public page

Static
or
Mobile

To mark the component as static
or mobile

If the component is static then location is mandatory

Ad-
dress

Address where the component is
located

The address, longitude and latitude fields work together with the lo-
cation list field. It’s possible to use the map to set the points adding
new locations.

Lati-
tude

Latitude in decimal format

Longi-
tude

Longitude in decimal format

Loca-
tions
List

Location/s of the component You can configure the component as a POI, a polyline or a polygon
(future feature) depending the location composition.

Technical details tab

As noted above, this tab displays a set of properties related to the technical details of the component such as manufac-
turer, serial number,

6.2. Administration console 121

Sentilo Documentation, Release 1.9.0

where:

Property Description Comments
Producer Manufacturer
Model Component model
Serial number Serial number
MAC Mac address of the device
Power type Energy type used by the device Select from a list of available values (see the API for de-

tails)
Connectivity
type

Connection type used by the de-
vice

Select from a list of available values (see the API for de-
tails)

Additional information tab

This tab displays the set of additional properties related to the component See the parameter additionalInfo of the API
docs.

These fields are not categorized, i.e., here you could stored any device information which will be of interest.

For each property, it will be displayed as a label-value entry where the property’s key will be the label and the
property’s value will be the value, as shown in the following picture:

where the following map, stored on the backend, has been rendered {“Comarca”:“Alt Empordà”,“Terme munici-
pal”:“COLERA”,“Provincia”:“Girona”}

122 Chapter 6. Catalog and Maps

./api_docs/services/catalog/create_sensors.html#parameters

Sentilo Documentation, Release 1.9.0

Sensors/actuators tab

The meaning of this tab is the same as for the providers, but restricted to the current component.

6.2.6 Sensors

These section is used for creating, updating or deleting sensors or actuators. Usually these elements are created by the
provider autonomously using the API.

The sensors list page follows the same structure as described for components (you could change the public/private
visibility or delete sensors massively through the list).

List

It is possible to full-text search the list in the “Filter” box. The filter works for all filter attributes except the creation
date. The Filter field is case-sensitive. Only search by the substate’s code is possible at the moment.

You’ll be able to list, filter, show sensors details, and create (New application button) and delete selected sensors
(select from left checkbox, and apply by Delete selected button).

Further, you’ll be able to export the list to Excel, by clicking on Export to Excel button. The result file will contain the
list columns and a number of extra ones from internal database use.

Use the button panel at the bottom right to navigate through the list (first page, previous page, page number, next page
and last page, respectively).

Details Tab

The detail page of a sensor is structured into four tabs:

6.2. Administration console 123

Sentilo Documentation, Release 1.9.0

where

• The Details tab displays the main properties of the sensor.

• The Technical details tab displays several categorized properties of the sensor.

• The Additional information tab displays the custom properties of the sensor.

• The Latest data tab shows the latest observations received from the sensor.

The main properties of the Details tab are the following:

124 Chapter 6. Catalog and Maps

Sentilo Documentation, Release 1.9.0

Property Description Comments
Sensor / Actuator Name of the sensor/actuator. Mandatory. After its creation can’t

be modified. It is the identifier used
in the API calls.

Provider Sensor provider owner Mandatory
Description Description
Component Component to which the sensor be-

longs
Mandatory

Access type Checkbox to set the sensor visibility
to public or private

Creation date Creation date Automatically generated
Update date Last update date Automatically generated
Type Sensor type Mandatory. Select from a list of

available types
Data type Type of data published by the sensor Mandatory. Possible values are:

• Audio Link
• Boolean
• File link
• Image link
• JSON
• Link
• Numerical
• Text
• Video Link

Unit Measurement unit
Time zone Time zone for the data sent by the

sensor
Tags Related custom tags of the sensor
State State of the sensor Possible values: online | offline. If

the sensor is configured as offline
the API will reject any data publica-
tion, the alerts will be disabled and
the sensor won’t be visible in the
map. Likewise, offline sensors are
excluded from the /catalog GET re-
quest. Default value is online.

Substate Substate of the sensor The list of possible values that have
informational purpose and are spe-
cific for every deployment. You can
customize the list of possible sub-
state values editing the contents of
table sensorSubstate in mongoDB.
No default value.

TTL (min) Time of expiration of sensor’s data
in minutes

This value can be config-
ured only from the catalog,
Only admin should control
this value. The default value
is redis.expire.data.seconds
from the platform server jedis-
config.properties

6.2. Administration console 125

Sentilo Documentation, Release 1.9.0

Technical details tab

As noted above, this tab displays a set of properties related to the technical details of the sensor (such as the manufac-
turer, the model, the serial number and the power type , all of which are described in the component section) as shown
in the following picture:

Visual configuration tab

The only configurable option in this tab is “Chart values number”. This integer indicates how many measures will be
show in the observation chart of the sensor.

Additional information tab

The meaning of this tab is the same as for the components.

This tab displays the set of additional properties related to the component See the parameter additionalInfo of the API
docs.

These fields are not categorized, i.e., here you could stored any device information which will be of interest.

For each property, it will be displayed as a label-value entry where the property’s key will be the label and the
property’s value will be the value.

Latest data tab

This tab, as shown in the following picture:

126 Chapter 6. Catalog and Maps

./api_docs/services/catalog/create_sensors.html#parameters

Sentilo Documentation, Release 1.9.0

displays both the latest observation published by the sensor and a graph with its last activity.

Navigate the last data chart

You can navigate along the dates of the graph by using the buttons located in the lower right corner of it:

• left arrow: navigate to the past (only if there are older data)

• reload data (center button): reload last data / reset chart data

• righth arrow: navigate to the future (only if you have navigated or gone into the past before)

Number of chart observations at chart

You can change the number of values shown in the graph. To do this, within the sensor editing tabs, go to “Visual
configuration”, and there edit the value of the “Chart values number” field

6.2. Administration console 127

Sentilo Documentation, Release 1.9.0

You must inform a positive value number. If blank, then default value shall be applied as that has been configured in
the organization visual configuration.

Showing complex data

If your sensor data type is text, and it contains a complex data in json format, Sentilo will show it as a prettified value:

in this case you will have the possibility to inspect, expand or contract the json map shown as a value using the
navigation buttons:

128 Chapter 6. Catalog and Maps

Sentilo Documentation, Release 1.9.0

Collapse data: the json map will be collapsed at all

Expand data: the json map will be expanded at all (default view)

Collapse to level X: insert a correct value for the X, and click the button to collapse to the specified level (default level
is 0, first level)

6.2. Administration console 129

Sentilo Documentation, Release 1.9.0

6.2.7 Alerts

Used for managing internal or external Alerts. Usually, external Alerts are created by a third party autonomously via
the API. This third party could be a provider or application. Internal Alerts can be defined from the console or using
the API. Internal alerts will always be associated to a provider.

It’s also possible to delete the items massively from the alerts list.

Properties

Id Name Description
ID Alert identifier After its creation can’t be modified
Name Display name
De-
scrip-
tion

Description

Active Indicates whether the alert
is activated or not

When a sensor goes into the offline state, the associated alerts are also
automatically deactivated.

Cre-
ation
date

Creation date Automatically generated

Update
date

Last update date Automatically generated

Type Alert type Internal/External
Provider Related provider For external alerts, a provider which will generate the associated alarms.

For internal alerts, the related data provider.
Appli-
cation

Related provider Only for external alerts, application which will generate the associated
alarms

Compo-
nent

Related component Only for internal alerts

Sensor Related sensor Only for internal alerts
Trigger
type

Type of trigger that will be
applied

Only for internal alerts. Value list, see the API for details

Expres-
sion

Expression to be evaluated Only for internal alerts

130 Chapter 6. Catalog and Maps

Sentilo Documentation, Release 1.9.0

List

Access the Alerts list. This is the main Alert page. From here you’ll can access to the desired alert to show its details
by click on it.

You’ll be able to list, filter, show alerts details, create (New alert button) and delete selected alerts (select from left
checkbox, and apply by Delete selected button).

Further, you’ll be able to export the list to Excel, by clicking on Export to Excel button. The result file will contain the
list columns and a number of extra ones from internal database use.

Use the button panel at the bottom right to navigate through the list (first page, previous page, page number, next page
and last page, respectively).

Filtering the alerts list

It is possible to full-text search the list in the “filter” box. The field is case-sensitive. That means that you can search
for full or partial text contained in the identifier, type, trigger or status field. If you want to search for certain trigger
type, currently only searching by trigger type’s code is possible (e.g. a search for “GT” would return results in the
above screen, whereas a search for “GT(40)” wouldn’t).

6.2. Administration console 131

Sentilo Documentation, Release 1.9.0

6.2.8 Alerts creation rules

It is possible to bulk-create alerts for a group of sensors. For example, attach a rain alert rule to all pluviometers of
certain provider.

132 Chapter 6. Catalog and Maps

Sentilo Documentation, Release 1.9.0

List

Accessing “Alert creation rules” menu option opens a list of existing Alert Rules.

You’ll be able to list, filter, show alert rules details, create (New rules button) and delete selected rules group (select
from left checkbox, and apply by Delete selected button).

Further, you’ll be able to export the list to Excel, by clicking on Export to Excel button. The result file will contain the
list columns and a number of extra ones from internal database use.

Use the button panel at the bottom right to navigate through the list (first page, previous page, page number, next page
and last page, respectively).

Create rules

To create new alerts, use the “New Rules” button.

6.2. Administration console 133

Sentilo Documentation, Release 1.9.0

After pressing the “Confirm” button, a modal window will inform on how many alerts will be created for given
combination of provider, component type and sensor type.

Subsequently, alerts are created, all having the same rule. At the moment it is not possible to bulk-create alerts without
specifying the provider.

To bulk-delete alerts with associated with a particular rule, just select the item from the Alert Rule list and press Delete.

134 Chapter 6. Catalog and Maps

Sentilo Documentation, Release 1.9.0

6.2.9 Active Subscriptions

Active Subscriptions is a handy section that gives a view of situation of the subscriptions to Sentilo.

The some system subscribes to Sentilo and then is inaccessible for a long time, this creates a unnecessary queue in the
system.

6.2.10 Sensor types

Used for creating, updating or deleting sensor types. The sensor types should be defined through the administrator
console before adding elements to the catalog.

It’s possible to delete elements massively through the sensor list.

Properties

Id Name Description
Id Type identifier After its creation can’t be modified
Name Display name
Description Description
Creation date Creation date Automatically generated
Update date Last update date Automatically generated

List

Access the main Type of Sensors / Actuators list page, will show you a complete list of type of sensors.

6.2. Administration console 135

Sentilo Documentation, Release 1.9.0

You’ll be able to list, filter, show typologies details, create (New typology button) and delete selected typology (select
from left checkbox, and apply by Delete selected button).

Further, you’ll be able to export the list to Excel, by clicking on Export to Excel button. The result file will contain the
list columns and a number of extra ones from internal database use.

Use the button panel at the bottom right to navigate through the list (first page, previous page, page number, next page
and last page, respectively).

New

Access to create new typology pressing New typology button. You must inform an identifier, name and description
(optional) for the new typology.

6.2.11 Component types

Used for creating, updating or deleting component types. The component types should be defined through the admin-
istrator console before adding elements to the catalog.

It’s possible to delete elements massively through the component list.

Properties

136 Chapter 6. Catalog and Maps

Sentilo Documentation, Release 1.9.0

Id Name Description
Id Type identi-

fier
After its creation can’t be modified

Name Display
name

Descrip-
tion

Description

Creation
date

Creation
date

Automatically generated

Update
date

Last update
date

Automatically generated

Photo Related
photo

Generic picture for the component type, will be used if there isn’t any specified for
the component itself

Icon Related icon Value list from the deployed icon list. Used in the maps for representing the compo-
nent

List

Access the main Component’s typology list page, will show you a complete list of available type of components.

You’ll be able to list, filter, show typology details, create (New application button) and delete selected typologies
(select from left checkbox, and apply by Delete selected button).

Further, you’ll be able to export the list to Excel, by clicking on Export to Excel button. The result file will contain the
list columns and a number of extra ones from internal database use.

Use the button panel at the bottom right to navigate through the list (first page, previous page, page number, next page
and last page, respectively).

New

Access to create new typology pressing New typology button. You must inform an identifier, name, description (op-
tional), photo (optional) and icon for the new typology.

6.2. Administration console 137

Sentilo Documentation, Release 1.9.0

6.2.12 Metrics

The new Metrics section provides a real-time monitoring of all Sentilo modules, including agents. This information is
useful when you want to rapidly assess the state of the service. However, for production monitoring, we recommend
to also setup some process watcher and alerting system.

Example of the timeline:

138 Chapter 6. Catalog and Maps

Sentilo Documentation, Release 1.9.0

Example of dashboard:

Note: Since the metrics are in real-time only, no history is shown unless you leave the Metrics page open for a while.
The page will show graphics for this time. If you reload the page, the history will be reset.

New internal monitor API runs on different port that the Sentilo API. It’s port number is config-
ured in /sentilo-platform/sentilo-platform-server/src/main/resources/properties/
config.properties. The default value is 7081.

monitor.port=7081

The agent Metrics Monitor Agent gathers these metrics and persists them in Elasticsearch.

6.3 Statistics page

The public section of the Catalog allows us to display some Sentilo statistics through a set of features/pages which
allow us to inspect the current platform activity and to display the components/sensors over a map.

The statistic dashboard, which is accessible from the top menu bar, displays some basic use indicators, like total
requests processed, number of sensors registered, current requests per second, max daily average and max average
requests per second, These values are automatically updated every 30 seconds.

These values are never being reset, unless you re-create Redis database.

6.3. Statistics page 139

/integrations.html#metrics-monitor-agent

Sentilo Documentation, Release 1.9.0

It also shows a time-series graph which displays the platform activity (such as observations, orders and alarms) for the
last 100 minutes. This graph is automatically updated every 5 minutes.

6.3.1 Navigate the last data chart

Note: You can navigate along the dates of the graph by using the buttons located in the lower right corner of it:

• left arrow: navigate to the past (only if there are older data)

• reload data (center button): reload last data / reset chart data

• right arrow: navigate to the future (only if you have navigated

or gone into the past before)

140 Chapter 6. Catalog and Maps

CHAPTER 7

Multi Tenant

7.1 Introduction

The Multi Tenant feature provides the capacity of creating and managing virtual Sentilo instances related with different
organizations(e.g. cities). Every organization has its own context, entities and data, and it can share information with
third parties at its will, even it’s possible to have different look & feel for every tenant.

Above all the tenants, a new role emerges for administer the platform, manage the organizations and create the neces-
sary users for administer each one. Additionally, the platform can provide additional services to its organizations, like
common integrations and offer a single map showing the public information of all its organization.

The Sentilo multi-tenancy model implements level 3 of SAAS maturity model, which offers a good levels of efficiency
and scalability balanced with a complexity and a reasonable operational costs:

• Single instance for all the tenants.

• Same software deployed version for all the entities.

• Unique typologies for components and sensors.

• Common data repositories for all the tenants.

• Personalization and access control for entities through admin console.

• Personalization of look & feel for tenants.

• Delegated administration for each entity, allowing them to administer its own data, devices, users and to share
data a their will.

After configuring it, every organization has its own virtual Sentilo instance and can be administered autonomously.

7.1.1 The Organization concept

The Organizations represent the different entities, usually cities, that owns a virtual Sentilo instance. Every one can
manage autonomously its own applications, providers, components and sensors. All these elements are property

141

Sentilo Documentation, Release 1.9.0

of the organization, and nobody outside the organization can access to them, unless the organization grants access
permissions to other organizations.

Organizations are administered through the various existing user roles, and according to them, be managed in different
ways:

Role Access type
Super
Ad-
min

The Super Admin user can create and administer organizations, users and typologies

Ad-
min

The Admin user can only manage its own organization parameters and has capacity for creating his own
users, applications, providers, components, sensors and alerts, which will be automatically related to its
organization

User The User can only access to public information data about the applications, providers, components,
sensors and alerts which belong to its own organization

Below you can see an organization list from a multi tenant Sentilo instance, when connecting as super admin user:

7.2 Sentilo contexts

There are several virtual contexts(URL paths) for a multi tenant Sentilo instance, one for every organization and one
for the public common area. It’s important to remark that for accessing to each organization console, you should
choose the correct path, otherwise you won’t be able to access, even using correct credentials.

7.2.1 Organization console

You should access to the administration console through the corresponding url address, adding the organization id as
a last parameter, as follows.

• http://sentilo_instance_host{[}:port{]}/sentilo-catalog-web/organizationId

142 Chapter 7. Multi Tenant

http://sentilo_instance_host{[}:port{]}/sentilo-catalog-web/organizationId

Sentilo Documentation, Release 1.9.0

In the parameter organizationId you should inform the organization identifier where you want access to. For exam-
ple, we could access to an organization named Sample Organization, with a sample_organization as organization
identifier in a Senilo instance deployed in a host with name example.com:

• http://example.com/sentilo-catalog-web/sample_organization

7.2.2 Platform console

Super Admin users should access to the catalog console without informing any organization identifier in the url. In
this case, no data is filtered by organization, and all the public information is visible in the public map and statistics:

• http://your_sentilo_server_ip/sentilo-catalog-web

Super Admin users are responsible of configuring the platform organizations and its users, and also to define the
component and sensor typologies.

7.2.3 Anonymous access

Anonymous users(not logged) can access the universal viewer directly without informing organization in the url. In
this case, no data is filtered by organization, and all public information is displayed in the public maps and statistics,
using the platform common look & feel.

• http://sentilo_instance_host{[}:port{]}/sentilo-catalog-web

In this case, the user will see all the public information provided for the instance organizations.

Alternatively, the users can access to a specific organization public information, specifying a different URL context:

• http://sentilo_instance_host{[}:port{]}/sentilo-catalog-web/organizationId

For example, we could access to an organization named Sample Organization, with a sample_organization as
organization identifier in a Sentilo instance deployed in a host with name example.com:

• http://example.com/sentilo-catalog-web/sample_organization

Then the user will see all the public data offered by the Sample Organization, displayed using the organization custom
look & feel.

For the rest of it, the features and behaviour of the public area is the same as described in Catalog and Maps section.

7.3 Platform administration

Super Admin users are responsible of configuring the platform organizations and its users, and also to define the
component and sensor typologies. They cannot see any organization data, such as components, sensors, alerts.

7.3.1 Organization administration

List

Only the Super Admin user can list, create and delete organizations. After the organization is created, an Admin
user can edit its own configuration settings. User role don’t have access to this information.

7.3. Platform administration 143

http://example.com/sentilo-catalog-web/sample_organization
http://your_sentilo_server_ip/sentilo-catalog-web
http://sentilo_instance_host{[}:port{]}/sentilo-catalog-web
http://sentilo_instance_host{[}:port{]}/sentilo-catalog-web/organizationId
http://example.com/sentilo-catalog-web/sample_organization
./catalog_and_maps.html

Sentilo Documentation, Release 1.9.0

Details

Below, the organization creation form, as a Super Admin:

In order to create an organization, we must inform, at least, these parameters:

• identifier: an unique organization identifier

• name: the organization name

• contact name: the name of the responsible person

• contact email: the email of the responsible person

Some other parameters are optional:

144 Chapter 7. Multi Tenant

Sentilo Documentation, Release 1.9.0

• description: some description about the organization

Config params

There are some additional parameters for customizing the public & private behavior.

Visual configuration

These params will apply to the entire catalog application visual customization, and how the user will see the data.
Note that time zone & date format are directly relationated.

Prop-
erty

Description Comments

Time
zone

Defines the time zone of the organiza-
tion, and modifies the way to display
data on screen, such as dates

You can define hourly difference or time zone abbreviations:
CET, UTC, +001. . .

Date
format

Defines the date format with which the
data will be displayed in the application
(lists, details. . .)

Example: dd/MM/yyyy HH:mm:ss = 30/11/2017 15:34:56
See all possible formats as Java Date Format, at: Java Date
Format

Chart
values
number

Number of observations displayed on
chart

It must be a positive integer number greater or equals to 10.
If blank, it will be a default value of 10. This value will be
overwritten by sensor’s configuration one.

Map configuration

These params configure the universal map visualization.

7.3. Platform administration 145

https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html

Sentilo Documentation, Release 1.9.0

Property Description Comments
Zoom
level

Zoom level of the univer-
sal map

Default value is 14. And you can define a value between 1 and 20.
See possible values in: https://developers.go ogle.com/maps/documen
tation/static-maps/in tro#Zoomlevels

Latitude
/ Longi-
tude

Defines the map center in
latitude & longitude val-
ues format

Map
back-
ground
color

Define the background
color of the map

Possible values applies with the colorpicker, or input a valid css / html
color value

7.3.2 Users administration

The Super Admin user can create, edit and delete any user from any Organization whatever role they have. In Addition,
Super Admin role is the unique user role that can create additional Super Admin users.

In a multi tenant instance, except for Super Admin users, when creating users, it’s mandatory to specify the related
organization.

List

New user

Details

The next image shows how the new user’s form is:

146 Chapter 7. Multi Tenant

https://developers.go

Sentilo Documentation, Release 1.9.0

Alternatively, we can inform some configuration params that will modify the catalog visualization for this user:

These params will apply to the entire catalog application visual customization, and how the user will see the data.
Note that time zone & date format are directly relationated.

Prop-
erty

Description Comments

Time
zone

Defines the time zone of the user,
and modifies the way to display
data on screen, such as dates

You can define hourly difference or time zone abbreviations: CET,
UTC, +001. . . Example: dd/MM/yyyy HH:mm:ss = 30/11/2017
15:34:56* Note that this value overrides the organization’s one, if in-
formed*

Date
for-
mat

Defines the date format with
which the data will be dis-
played in the application (lists,
details. . .)

See all possible formats as Java Date Format, at: Java Date Format Note
that this value overrides the organization’s one, if informed

7.3. Platform administration 147

https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html

Sentilo Documentation, Release 1.9.0

7.3.3 Component and Sensor types administration

Only the Super Admin user can administer the components and sensor types. In this case, the behaviour is the same
like for a normal Sentilo instance.

See more information about it in the [[Catalog and Maps section>>doc:Catalog & Maps]].

7.4 Tenant administration

Admin role users are directly related with an specific organization. They are the only ones who are able to administer
the organization private data, such as its providers, applications, components, sensors and alarms. They can also
manage its own users. The admin users will also be capable of seeing all the defined component and sensor typologies,
but they wont be able to modify them.

Basically, the only difference between the simple Sentilo instance and a Multi Tenant instance version is that only
users from one organization can see and access to information from its own organization. It’s also possible to share
information with another organizations, as described later. This data isolation make possible taking advantage of user
and organization hierarchy.

Below, we review the specific behaviour of tenant administration, remarking is specificities. For more information,
you can read the [[Catalog and Maps>>doc:Catalog & Maps]] section.

7.4.1 Organization administration

Admin users can only manage its own organization information.

Alternatively, Admin user can manage their config params and third party from/to permissions for sharing information
purposes. You’ll find them in the two last tabs that located in the top of the detail section.

Permission administration

148 Chapter 7. Multi Tenant

Sentilo Documentation, Release 1.9.0

Permissions list

Adding permissions

Adding to third party read & write permission:

Response upon permission has been created:

In this case we had granted read&write permissions from our organization and our provider sample_provider to
third party organization named Sentilo. So, now the Sentilo organization can access to the sample_provider data and
manage ii (publish data).

7.4. Tenant administration 149

Sentilo Documentation, Release 1.9.0

In the other side, the Sentilo organization can see these permissions in the second tab, Permissions from others:

And now, from this tab, we can change the permission visibility on the map. Simply select the checkbox from the
permission and click on Show in map or Hide in map.

When sharing providers with other organizations, their related entities(providers, components, sensors), will appear
on the other tenant console, but only in read mode.

7.5 Tenant resources administration: unique identifiers

Resources related to a tenant, such like providers and applications, must have unique identifier into a Sentilo instance.
But, in a multi tenant instance, it is possible to repeat it identifier, based on its tenant. So tenant resources are
completely independent between their tenants.

Multi tenant instances offers to the user a little visual difference. You will inform the resource identified with its own
tenant identifier as prefix.

It is transparent for users, but in administration console you’ll see a flag that informs you that you’re in a multi tenant
instance: sentilo@the_identifier, is related to an identifier from Sentilo tenant organization

7.5.1 Applications

For application creation form you’ll see this in the Identifier field:

150 Chapter 7. Multi Tenant

Sentilo Documentation, Release 1.9.0

In this case, we’re creating a application named My Application with identifier myapp_identifier.

7.5.2 Providers

For the providers, we would be facing the same case as for the Applications. Therefore, you can choose the desired
identifier, regardless of the tenant you are managing.

In this case, we’re creating a provider named My Provider, with identifier myprovider_identifier.

7.5. Tenant resources administration: unique identifiers 151

Sentilo Documentation, Release 1.9.0

152 Chapter 7. Multi Tenant

CHAPTER 8

Tutorials

Contents:

8.1 Java Client Tutorial

_static/images/tutorials/java_logo.jpg

The Sentilo Java Client is a library developed for working with webapps or standalone java applications. You can
download an example of a client from https://github.com/sentilo/sentilo-client-sample-java.

For this example, we’ll use a basic maven based web application, that retrieve some system data and send it as a
sensor observation to the Sentilo Platform. This webapp is named sentilo-client-java-sample and you’ll find it into
the source code (see above).

8.1.1 Hardware

We don’t need any specific hardware for running this example, only one PC with Internet connection.

8.1.2 Software

You’ll need some software packages, as you’re developing in Java environment:

• Java SE 1.8

• Eclipse IDE or STS Spring IDE

153

https://github.com/sentilo/sentilo-client-sample-java

Sentilo Documentation, Release 1.9.0

• The Sentilo Client Java Library, which you can download and install it as a Maven dependency into your
project (please, see the pom file in the project form more information)

• Tomcat 7+

• If you don’t have access to a working Sentilo instance, you might as well use our ‘ Sentilo VM
</use_a_virtual_machine.html>‘__.

8.1.3 The example

The code

Please download this sample webapp project from Git repository: https://github.com/sentilo/sentilo-client-sample-java

Once you have the project, open it with Eclipse or another IDE and construct it using Maven goals: clean package,
for downloading dependencies, compile the code and package it.

After your project is compiled and packaged, you can deploy it in a Tomcat webapp container (standalone or the one
your IDE provides).

Note: In case you use our VM on the same machine as Tomcat of this example, you might have a problem with port
8080 already being used. That’s because Virtualbox will NAT the VM’s Tomcat on 8080 to port 8080 on your host
machine. If it’s your case, you should change the port of your Tomcat to, for example, 8888.

Now you can then navigate into the project and edit the source code.

The properties file

You must modify the properties file application.properties located in src/main/resources/
properties in order to provide your correct Sentilo Platform Client configurations.

Sentilo Platform API Services IP
rest.client.host=YOUR_SENTILO_PLATFORM_CLIENT_ADDRESS

User configurations
rest.client.identityKey=YOUR_IDENTITY_KEY
rest.client.provider=samples-provider
rest.client.component=sample-component
rest.client.component.type=generic
rest.client.component.location=41.387015 2.170047
rest.client.sensor=sample-sensor-java
rest.client.sensor.type=status
rest.client.sensor.dataType=TEXT
rest.client.sensor.location=41.387015 2.170047

This settings should be updated:

• rest.client.host: provide a correct host or ip address of your Sentilo Platform Client, and replace the
YOUR_SENTILO_PLATFORM_CLIENT_ADDRESS with it. Needs the protocol and the port. Ex: http:
//localhost:8081

• rest.client.identityKey: provide your correct application security token, and replace the
YOUR_IDENTITY_KEY with it

• optionally rest.client.sensor.type: you can select a default type (anemometer, humidity, noise. . . etc) in the
catalog or you can create one of your election there.

154 Chapter 8. Tutorials

https://github.com/sentilo/sentilo-client-sample-java
http://localhost:8081
http://localhost:8081

Sentilo Documentation, Release 1.9.0

• optionally, you can provide your component / sensor locations, modifying the values
rest.client.component.location and rest.client.sensor.location

The samples controller

There’s a Spring MVC controller which displays a view with the sensor data retrieved from system and the publish
result. Navigate to src/main/java and open this resource org.sentilo.samples.controller.SamplesController.

This is a Spring Framework Controller that creates a view where you’ll see a sample data value obtained from the
System, and then send it as observation to your Sentilo Platform instance. The webapp is based on Maven & Spring
foundations, so you must modify and provide some configurations before start the example execution (see above).

@Controller
public class SamplesController {

private final Logger logger = LoggerFactory.getLogger(SamplesController.class);

private static final String VIEW_SAMPLES_RESPONSE = "samples";

@Autowired
private PlatformTemplate platformTemplate;

@Resource
private Properties samplesProperties;

@RequestMapping(value = {"/", "/home"})
public String runSamples(final Model model) {

// All this data must be created in the Catalog Application before start this
// sample execution. At least the application identity token id and the

→˓provider id must be
// declared in system twice
String restClientIdentityKey = samplesProperties.getProperty("rest.client.

→˓identityKey");
String providerId = samplesProperties.getProperty("rest.client.provider");

// For this example we have created a generic component with a status sensor
→˓that accepts text

// type observations, only for test purpose
String componentId = samplesProperties.getProperty("rest.client.component");
String sensorId = samplesProperties.getProperty("rest.client.sensor");

logger.info("Starting samples execution...");

String observationsValue = null;
String errorMessage = null;

try {
// Get some system data from runtime
Runtime runtime = Runtime.getRuntime();
NumberFormat format = NumberFormat.getInstance();
StringBuilder sb = new StringBuilder();
long maxMemory = runtime.maxMemory();
long allocatedMemory = runtime.totalMemory();
long freeMemory = runtime.freeMemory();

sb.append("free memory: " + format.format(freeMemory / 1024) + "
");
(continues on next page)

8.1. Java Client Tutorial 155

Sentilo Documentation, Release 1.9.0

(continued from previous page)

sb.append("allocated memory: " + format.format(allocatedMemory / 1024) + "
→˓
");

sb.append("max memory: " + format.format(maxMemory / 1024) + "
");
sb.append("total free memory: " + format.format((freeMemory + (maxMemory -

→˓ allocatedMemory)) / 1024) + "
");

// In this case, we're getting CPU status in text mode
observationsValue = sb.toString();

logger.info("Observations values: " + observationsValue);

// Create the sample sensor, only if it doesn't exists in the catalog
createSensorIfNotExists(restClientIdentityKey, providerId, componentId,

→˓sensorId);

// Publish observations to the sample sensor
sendObservations(restClientIdentityKey, providerId, componentId, sensorId,

→˓ observationsValue);
} catch (Exception e) {

logger.error("Error publishing sensor observations: " + e.getMessage(),
→˓e);

errorMessage = e.getMessage();
}

logger.info("Samples execution ended!");

model.addAttribute("restClientIdentityKey", restClientIdentityKey);
model.addAttribute("providerId", providerId);
model.addAttribute("componentId", componentId);
model.addAttribute("sensorId", sensorId);
model.addAttribute("observations", observationsValue);

ObjectMapper mapper = new ObjectMapper();

try {
if (errorMessage != null && errorMessage.length() > 0) {

Object json = mapper.readValue(errorMessage, Object.class);
model.addAttribute("errorMsg", mapper.

→˓writerWithDefaultPrettyPrinter().writeValueAsString(json));
} else {

model.addAttribute("successMsg", "Observations sent successfully");
}

} catch (Exception e) {
logger.error("Error parsing JSON: {}", e.getMessage(), e);
errorMessage += (errorMessage.length() > 0) ? "
" : "" + e.

→˓getMessage();
model.addAttribute("errorMsg", errorMessage);

}

return VIEW_SAMPLES_RESPONSE;
}

/**
* Retrieve catalog information about the sample provider. If the component and/

→˓or sensor doesn't

* exists, then let create they

*
(continues on next page)

156 Chapter 8. Tutorials

Sentilo Documentation, Release 1.9.0

(continued from previous page)

* @param identityToken Samples Application identity token for manage the rest
→˓connections

* @param providerId Samples provider id

* @param componentId Samples component id

* @param sensorId Samples sensor id

* @return {@link CatalogOutputMessage} object with provider's catalog data

*/
private CatalogOutputMessage createSensorIfNotExists(String identityToken, String

→˓providerId, String componentId, String sensorId) {
List<String> sensorsIdList = new ArrayList<String>();
sensorsIdList.add(sensorId);

// Create a CatalogInputMessage object for retrieve server data
CatalogInputMessage getSensorsInputMsg = new CatalogInputMessage();
getSensorsInputMsg.setProviderId(providerId);
getSensorsInputMsg.setIdentityToken(identityToken);
getSensorsInputMsg.setSensors(createSensorsList(providerId, componentId,

→˓sensorsIdList));

// Obtain the sensors list from provider within a CatalogOutputMessage
→˓response object type

CatalogOutputMessage getSensorsOutputMsg = platformTemplate.getCatalogOps().
→˓getSensors(getSensorsInputMsg);

// Search for the sensor in the list
boolean existsSensor = false;
if (getSensorsOutputMsg.getProviders() != null && !getSensorsOutputMsg.

→˓getProviders().isEmpty()) {
for (AuthorizedProvider provider : getSensorsOutputMsg.getProviders()) {

if (provider.getSensors() != null && !provider.getSensors().
→˓isEmpty()) {

for (CatalogSensor sensor : provider.getSensors()) {
logger.debug("Retrieved sensor: " + sensor.getComponent() + "

→˓- " + sensor.getSensor());
existsSensor |= sensorId.equals(sensor.getSensor());
if (existsSensor) {

break;
}

}
}

}
}

// If the sensor doesn't exists in the retrieved list, we must create it
→˓before publish the

// observations
if (!existsSensor) {

// Create a CatalogInputMessage object for retrieve server data
CatalogInputMessage registerSensorsInputMsg = new

→˓CatalogInputMessage(providerId);
registerSensorsInputMsg.setIdentityToken(identityToken);
registerSensorsInputMsg.setSensors(createSensorsList(providerId,

→˓componentId, sensorsIdList));

// Register the new sensor in the server
platformTemplate.getCatalogOps().registerSensors(registerSensorsInputMsg);

}
(continues on next page)

8.1. Java Client Tutorial 157

Sentilo Documentation, Release 1.9.0

(continued from previous page)

return getSensorsOutputMsg;
}

/**
* Publish some observations from a sensor

*
* @param identityToken Samples Application identity token for manage the rest

→˓connections

* @param providerId Samples provider id

* @param componentId Samples component id

* @param sensorId Samples sensor id

* @param value Observations value, in our case, a String type

*/
private void sendObservations(String identityToken, String providerId, String

→˓componentId, String sensorId, String value) {
List<String> sensorsIdList = new ArrayList<String>();
sensorsIdList.add(sensorId);
createSensorsList(providerId, componentId, sensorsIdList);

List<Observation> observations = new ArrayList<Observation>();
Observation observation = new Observation(value, new Date());
observations.add(observation);

SensorObservations sensorObservations = new SensorObservations(sensorId);
sensorObservations.setObservations(observations);

DataInputMessage dataInputMessage = new DataInputMessage(providerId,
→˓sensorId);

dataInputMessage.setIdentityToken(identityToken);
dataInputMessage.setSensorObservations(sensorObservations);

platformTemplate.getDataOps().sendObservations(dataInputMessage);
}

/**
* Create a component list

*
* @param componentId Component identifier

* @return A {@link CatalogComponent} list

*/
private List<CatalogComponent> createComponentsList(String componentId) {

List<CatalogComponent> catalogComponentList = new ArrayList<CatalogComponent>
→˓();

CatalogComponent catalogComponent = new CatalogComponent();
catalogComponent.setComponent(componentId);
catalogComponent.setComponentType(samplesProperties.getProperty("rest.client.

→˓component.type"));
catalogComponent.setLocation(samplesProperties.getProperty("rest.client.

→˓component.location"));
catalogComponentList.add(catalogComponent);
return catalogComponentList;

}

/**
* Create a sensor list

*
(continues on next page)

158 Chapter 8. Tutorials

Sentilo Documentation, Release 1.9.0

(continued from previous page)

* @param componentId The Sample Component Id

* @param sensorsIdList A list with the sensor ids to create

* @return A {@link CatalogSensor} list

*/
private List<CatalogSensor> createSensorsList(String providerId, String

→˓componentId, List<String> sensorsIdList) {
List<CatalogSensor> catalogSensorsList = new ArrayList<CatalogSensor>();
for (String sensorId : sensorsIdList) {

CatalogSensor catalogSensor = new CatalogSensor();
catalogSensor.setComponent(componentId);
catalogSensor.setSensor(sensorId);
catalogSensor.setProvider(providerId);
catalogSensor.setType(samplesProperties.getProperty("rest.client.sensor.

→˓type"));
catalogSensor.setDataType(samplesProperties.getProperty("rest.client.

→˓sensor.dataType"));
catalogSensor.setLocation(samplesProperties.getProperty("rest.client.

→˓sensor.location"));
catalogSensorsList.add(catalogSensor);

}
return catalogSensorsList;

}
}

What’s happenning?

• First of all, we’re looking for some configuration settings, like the component and sensor names

• Next, we’re using some runtime status values, so we can the publish them as a observations (mem status, for
example)

• First of all, we check if the sensor has been created before in the Catalog, and if it doesn’t exists we add it

• After that, we’ll publish the sensor observations

• Then, we pass all this information to the view for displaying it the navigator window

This is an observation sample:

CPU states: 5.8% user, 1.9% system, 0.0% nice, 0.0% wait, 91.7% idle

The samples page view

And finally, this is the source code of the view:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ page contentType="text/html; charset=UTF-8" pageEncoding="UTF-8"%>
<!DOCTYPE html>

<html>

<head>

</head>

<body>

(continues on next page)

8.1. Java Client Tutorial 159

Sentilo Documentation, Release 1.9.0

(continued from previous page)

<h3>Observations:</h3>
<p>${observations}</p>

<c:if test="${not empty successMsg}">
<h3>Success:</h3>
<p>${successMsg}</p>
</c:if>

<c:if test="${not empty errorMsg}">
<h3>Error:</h3>
<pre>${errorMsg}</pre>
</c:if>

<button onclick="location.reload();">Send observations</button>

</body>

</html>

This source code is quite easy, so don’t need to comment it.

Executing the sample application

Using the IDE or copying the WAR file, deploy your webbapp into the Tomcat deployments directory, and start it.

You must access to this url (we assume that you’re in your localhost and your port is the 8080, the default values):
http://localhost:8080/sentilo-samples (http://localhost:8888/sentilo-samples if using VM)

And then you must see a result page like this:

As you can see, there’s a button named Send observations. You can use to re-send observations and reload the page.
Every page reload send the observations to the Sentilo Platform Client.

160 Chapter 8. Tutorials

http://localhost:8080/sentilo-samples
http://localhost:8888/sentilo-samples

Sentilo Documentation, Release 1.9.0

8.2 RaspberryPi Client

The SentiloClientNodeJS is a library written in javascript that brings to you the possibility to connect any device and
embedded device with Node.js to a Sentilo instance easily.

For this example we’ll use a Raspberry pi device, because its special features, like cheap price, small dimensions and
the great input-output possibilities.

8.2.1 Hardware

We need some hardware to execute this example:

Material Description
Raspberry Pi Of course, we need a Raspberry Pi, doesn’t matters its version. You need a Raspbian distro

installed too
Ethernet cable or
wifi dongle

Doesn’t matter what network hardware do you use, it’s up to you, but you’ll need the correct
drivers correctly configured for connecting to Internet

Some cables Some “dupont” male-to-female cables to make breadboard connections
A LED We’ll use a LED as an output for simulating order execution, you can pick any color
A resistor A 470 Ohms 1/4W resistance
A breadboard You’ll need an electronic connections base to make some circuits, so we’ll recommend you

to get a breadboard

8.2.2 Software

We need to install some node.js alternative modules or libraries. We’ll install them through npm or download them
from the Internet. See the next section for more information.

8.2.3 Setup the Raspi

In this example we’ll show to you how to implement a sensor and a actuator with several capabilities such as:

• get values from one o more sensors connected to it GPIO port and publish them in Sentilo

• receive orders from a Sentilo application and actuate on the GPIO in consequence

If you don’t have node.js installed, install it with:

sudo apt-get install nodejs
sudo apt-get install npm

8.2. RaspberryPi Client 161

Sentilo Documentation, Release 1.9.0

The software

Create the workspace

First of all, create a directory named sentilo (for example) in our user home and change to it:

pi@raspberrypi ~ $ mkdir sentilo && cd sentilo

Here we’ll work with all our files.

Install the sample code and its dependencies

Download the sample project for this tutorial from the Sentilo git repository, and clone it into your working directory:

pi@raspberrypi ~/sentilo $ git clone https://github.com/sentilo/sentilo-client-sample-
→˓nodejs

We need some Node.js modules to work with our library. So you need to download and install the through npm.

You can download via npm update:

pi@raspberrypi ~/sentilo/sentilo-client-sample-nodejs $ npm install

Or install them directly:

pi@raspberrypi ~/sentilo/sentilo-client-nodejs $ npm install restify
pi@raspberrypi ~/sentilo/sentilo-client-nodejs $ npm install sync-request
pi@raspberrypi ~/sentilo/sentilo-client-nodejs $ npm install onoff

Which dependencies have been installed?

• sentilo-client-nodejs is a client library for Sentilo (see its main GiHub page for more information)

• restify is a rest server interface for Node.js that allow to us to create a rest server easily (see this link for more
information)

• sync-request, allow to us to create synchronous http calls (see this link for more information)

• onoff, a GPIO driver that allow to us to turn on and off a LED very easily! (see this link for more information)

Now, we can start to develop with node in our working directory

Connecting the hardware

We’ll assume that you have your Raspberry Pi connected to the Internet, a Raspbian system correctly installed and
enough permissions to create and runs scripts in your user home. Usually, we will use the pi user.

To simulate a sensor’s actuator, we’ll use a LED connected to the GPIO 14 from the Raspberry Pi.

Let see it below:

162 Chapter 8. Tutorials

https://github.com/sentilo
https://github.com/sentilo/sentilo-client-nodejs
https://www.npmjs.com/package/restify
https://www.npmjs.com/package/sync-request
https://www.npmjs.com/package/tm-onoff

Sentilo Documentation, Release 1.9.0

As you can see, we only connect the LED annode to the 14 GPIO pin, and the kathode to the GND pin. We’re ready
to turn ON and OFF this LED from the Sentilo platform.

8.2.4 The example

Our example is a complete test of the Sentilo Client Node.js library.

The library allows you to perform these operations:

• Catalog

– Get sensors from a provider

– Register sensors for a provider

8.2. RaspberryPi Client 163

Sentilo Documentation, Release 1.9.0

– Update sensors configuration

– Register alerts

• Alarm

– Publish alarms

• Data

– Retrieve last observations from a sensor

– Publish observations

• Subscription

– Subscribe orders from a sensor

– Subscribe orders for all the sensors of a provider

The code

actuator.js

This file contains code to control the output LED, that performs a simulation of a possible actuator controlled by the
Raspberry Pi and orders published on the Sentilo platform. In the example, the system is being subscribed as endpoint
to receive incoming order actuation calls.

var Gpio = require('onoff').Gpio;
var led;

module.exports = {

init : function() {
// Configure the GPIO as OUTPUT
led = new Gpio(14, 'out');

console.log('Turning OFF the LED');

// Turn off the LED on startup
led.writeSync(0);

},

/**
* Execute an order in the actuator. For this example, we've mounted a LED

* in GPIO 14, where we can turn it ON (order=ON) or OFF (order=OFF)

*
* @param order

* A Sentilo order object structure

*/
executeOrder : function(order) {

console.log('Executing order: ' + order.message);

if (order.message === 'ON') {
console.log('Turning ON the LED');
led.writeSync(1);

} else if (order.message === 'OFF') {
console.log('Turning OFF the LED');
led.writeSync(0);

(continues on next page)

164 Chapter 8. Tutorials

Sentilo Documentation, Release 1.9.0

(continued from previous page)

}

}

};

What’s happening here?

• The init function configures the GPIO 14 as an output to control the LED (don’t forget to call it!)

• The executeOrder function performs the actuator order execution, for our case, it turns the LED ON and OFF
if the order was either ON or OFF. The main server code will access this function.

sensor.js

This file contains the code that performs a possible sensor data read and return its value. For our example, we only
emulate a random value as a possible sensor data value. You may develop an data input sensor with a GPIO library.

module.exports = {

readSensorValue : function() {

var sensorValue = Math.floor((Math.random() * 255));
return sensorValue;

}

};

What’s happening here?

• The readSensorValue function reads a possible sensor input data value from an external way. The main server
code will access to this function to read the sensor data.

NOTE: as you see, you must implement this function to complete your requirements

server.js

This is the main node file. This file performs a rest server and still waiting for incoming calls that apply to the actuator.

const restify = require('restify');
const os = require('os');
const sentilo = require('sentilo-client-nodejs');

const sensor = require('./sensor.js');
const actuator = require('./actuator.js');

actuator.init();

// Get some OS values, like the sensor IP
const interfaces = os.networkInterfaces();
const addresses = [];
for (var k in interfaces) {

for (var k2 in interfaces[k]) {
var address = interfaces[k][k2];
if (address.family === 'IPv4' && !address.internal) {

(continues on next page)

8.2. RaspberryPi Client 165

Sentilo Documentation, Release 1.9.0

(continued from previous page)

addresses.push(address.address);
}

}
}
const myIp = addresses[0];
const myPort = 8000;
const myEndpoint = 'http://'+myIp+':'+myPort;
const myOrderEndointPath = '/order';
const myOrderEndoint = myEndpoint + myOrderEndointPath;

console.log('My ip address is: ' + myIp + ', and my port: ' + myPort);

// Service and example options
// You must modify it under your requirements
const samplesOptions = {

apiUrl : 'YOUR_SERVER_URL',
headers : {

identity_key : 'YOUR_IDENTITY_KEY'
},
provider : 'samples-provider',
sensor : 'sample-sensor-nodejs',
component : 'sample-component',
componentType : 'generic',
sensorDataType : 'TEXT',
sensorType : 'status',
sensorUnit : '',
sensorLocation : 'YOUR_SENSOR_LOCATION'

};

sentilo.init(samplesOptions);

// Starts a RESTFul server to manage orders inputs via POST calls
const server = restify.createServer({

name : 'SentiloClient for Nodejs Example Server',
version : '1.0.0'

});

// We only need a POST endpoint service to receive orders callbacks
// The path will be [POST] http://<RASPI IP>:8000/order
server.post('/order', function(req, res, next) {

res.send(req.params);

console.info("[POST] Order received: " + JSON.stringify(req.params));

// Execute the order in the actuator
actuator.executeOrder(req.params);

var value = 'Order received and executed: ' + JSON.stringify(req.params.message);
sentilo.publishObservations(value, samplesOptions);

return next();
});

// Starts the server and listen on port 8000
(continues on next page)

166 Chapter 8. Tutorials

Sentilo Documentation, Release 1.9.0

(continued from previous page)

server.listen(myPort, function() {
console.log('%s listening at %s', server.name, myEndpoint);
console.log('The server is now ready to receive POST incoming calls');

});

// Test if is there the sensor configured in the catalog
const existsSensor = sentilo.existsSensorInCatalog(samplesOptions);
if (!existsSensor) {

// If not, then create it
sentilo.createSensor(samplesOptions);

}

// Now we can publish a first alarm that informs that the sensor is up
// First of all let create an external alert
console.log('Registering the System Status Alert...');
const alertsListInputMessage = {

alerts : [{
id : 'SYSTEM_STATUS_ALERT',
name : 'SYSTEM_STATUS_ALERT',
description : 'Custom alert to inform the system status',
type : 'EXTERNAL'

}]
};
sentilo.createAlerts(alertsListInputMessage);

// And then, we can publish an alarm to inform that the system is up now
const alarmInputMessage = {

message : 'The system goes up on ' + new Date()
};
sentilo.publishAlarm('SYSTEM_STATUS_ALERT', alarmInputMessage);
console.log('Alarm published: ' + alarmInputMessage.message);

// Subscribe the sensor orders
// We'll manage it throught our server on POST service
const subscriptionInputMessage = {

endpoint : myOrderEndoint
};
sentilo.subscribeOrder(subscriptionInputMessage);

// Now, we can publish observations every 60 seconds
// And still waiting for incoming orders
const systemObservationsTimeout = 60000;
console.log('The sensor is now up, and we\'ll be sending some observations every ' +
→˓systemObservationsTimeout + ' ms');
setInterval(function() {

// Send some System information
var freeMemValue = "OS freemem: " + os.freemem();
console.log('Retrieved system freemem value: [' + freeMemValue + '] and

→˓publishing it as an observation...');
sentilo.publishObservations(freeMemValue, samplesOptions);

// Retrieve some sensor data and send it as observation...
var sensorDataValue = "Sensor value: " + sensor.readSensorValue();
console.log('Retrieved sensor value: [' + sensorDataValue + '] and publishing it

→˓as an observation...');
sentilo.publishObservations(sensorDataValue, samplesOptions);

(continues on next page)

8.2. RaspberryPi Client 167

Sentilo Documentation, Release 1.9.0

(continued from previous page)

}, systemObservationsTimeout);

First of all, we’ll see the configuration options. They must be changed before run this example.

You must provide the correct values for these variables located into the samplesOptions object:

• YOUR_SERVER_URL: provide the correct ip address or host of your Sentilo’s instance rest server

• YOUR_IDENTITY_KEY: you must provide your private security key (tokenId) that identifies your applica-
tion or provider. Should it be an application, it have ADMIN permissions over your provider.

• YOUR_SENSOR_LOCATION: this is optional, identifies the component location of the sample sensor. It can
be for example '41.387015 2.170047'

Now, what’s happens in this code?

• First, we start a rest server with the restify module, that allows to us to provide an endpoint for incoming order
calls (POST method). After that, we create a subscription for our orders.

• When a POST request is received, the server will invoke the actuator’s executeOrder function, so we can
manage the order correctly (turn ON/OFF the LED, for example)

• Initialize the sentilo’s helper module (as you can see above), implemented by the sentilo.js file

• We’re passing to it our specific services configuration, like the sensor id, provider’s token, etc. . .

• Request for the sensor in the Sentilo Catalog platform, and if it doesnt’t exists, create it

• Once we have created the sensor, we’re creating an alert, named SYSTEM_STATUS_ALERT, and publishing
an initial alarm that says The system goes up on {date}. Then, the sensor is up and we’re informing it to the
system

• After that, retrieve some system and sensor data values and publish them every 60000ms (1 minute) in a infinite
loop

Executing the example

Now we can finally execute the example.

Simple type:

pi@raspberrypi ~/sentilo/sentilo-client-nodejs $ node server.js
Turning OFF the LED
My ip address is: 127.0.0.1, and my port: 8000
Registering the System Status Alert...
Alarm published: The system goes up on Thu May 07 2015 13:52:21 GMT+0000 (UTC)
The sensor is now up, and we'll be sending some observations every 60000 ms
SentiloClient for Nodejs Example Server listening at http://127.0.0.1:8000
The server is now ready to receive POST incoming calls

And now, the server is waiting for publish the observations every 60 seconds:

Retrieved system freemem value: [OS freemem: 846716928] and publishing it as an
→˓observation...
Retrieved sensor value: [Sensor value: 64] and publishing it as an observation...

168 Chapter 8. Tutorials

Sentilo Documentation, Release 1.9.0

Publishing and accepting orders

The server also is writing for incoming POST calls that responses the ORDER requests. You can practice with orders,
sending a PUT message to the Sentilo platform, some like this:

http://sentilo_platform_ip:8081/order/samples-provider/sample-sensor-nodejs

With these values:

HEADER > identity_key : 'YOUR_IDENTITY_KEY'
BODY > {"order" : "ON"} > this turns ON the LED
BODY > {"order" : "OFF"} > this turns OFF the LED

After that, you’ll see in the console some log like this when you’re turning the LED ON, sending order = ON:

[POST] Order received: {"message":"ON","timestamp":"07/05/2015T13:58:20","topic":"/
→˓order/samples-provider/sample-sensor-nodejs","type":"ORDER","sensor":"sample-sensor-
→˓nodejs","provider":"samples-provider","sender":"samples-provider","time
→˓":1431007100595}
Executing order: ON
Turning ON the LED

Or turning it OFF, with order = OFF:

[POST] Order received: {"message":"OFF","timestamp":"07/05/2015T14:01:13","topic":"/
→˓order/samples-provider/sample-sensor-nodejs","type":"ORDER","sensor":"sample-sensor-
→˓nodejs","provider":"samples-provider","sender":"samples-provider","time
→˓":1431007273310}
Executing order: OFF
Turning OFF the LED

Debugging the library

If you need to debug your execution, you can edit the file node_modules/sentilo-client-nodejs/src/
utils/SentiloLogs.js and edit the logs configuration properties, as you need:

var options = {
className : 'Sentilo',
enableLogs : true,
enableDebug : true,
enableInfo : true,
enableWarn : true,
enableError : true,
enableFatal : true

};

For our purpose, we only have DEBUG, INFO and ERROR logs. Try tu use true or false for each one.

8.3 Arduino Tutorial

The SentiloClient Library for Arduino offers a basic C++ library implementation that allows to the developer a quick
integration sketch with the Sentilo Platform through its API Rest Client.

8.3. Arduino Tutorial 169

Sentilo Documentation, Release 1.9.0

For these examples we’ll create a new sensor in the Sentilo Platform, only if it doesn’t exists, and then we’re going to
publish some observations obtained from the local sensors.

8.3.1 Hardware

We’ll need some hardware materials:

Material Description
>Arduino board We recommend that you use a Mega 2560 board, which brings to you a bit more program

memory than Uno.
>Official Ethernet
Shield for Arduino

The library is based on the communication layer that provides the Official Ethernet
Shield. Basically, it is a http rest client module.

Some sensors For these examples we’ll use two types of sensors: a LM35 temperature sensor, and a
basic LDR brightness sensor (photocell)

Resistors Two 1KOhm resistors 1/4W
Breadboard A breadboard that allow to you the quick connection of the electronic components
Wires Connection wires, like ‘dupont’ male-to-male ones, that brings to you easily connection

between the Arduino board and the breadboard and the sensors
Ethernet cable A cable for connecting the Ethernet Shield to the Internet through your router o modem
B type USB cable A cable for connecting your Arduino board to the PC

8.3.2 Software

We’ll use the Official Arduino IDE, that you can download from here. Of course, you’ll need a PC, with Windows
or Linux, or a Mac computer.

8.3.3 Setup the Arduino

The Arduino IDE

We assume that you have installed the Arduino IDE and you know how to use it :). If not, then you can have a look
on this link.

170 Chapter 8. Tutorials

http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage

Sentilo Documentation, Release 1.9.0

Download and install the library

Download our SentiloClient library or clone it from Git via this link: https://github.com/sentilo/sentilo-client-arduino,
and then install it as a custom library into your Arduino IDE. If you don’t know how to install custom libraries, you
can have a look on this link, see the Importing a .zip Library section.

8.3.4 The example

First example: publishing a basic observation

Once you have installed the library into the Arduino IDE, you can go to the menu option File > Examples > Sentilo-
Client > SentiloClient-Example-01 and open the sample code. In this example Arduino is going to connect to the
network and publish a basic observation with these contents: “This is a sample observation”.

Sentilo configuration

You must have configured this information in the Sentilo catalog:

• A provider (in our case, named samples-provider) and its token

• A component (in our case, named sample-component)

• A sensor (in our case, named sample-sensor-arduino-01 for the first example, and another one named sample-
sensor-arduino-02 for the second one), with this minimum configuration settings:

sensor = sample-sensor-arduino-01
type = status
dataType = TEXT
component = sample-component
componentType = generic

Then, you must replace the client connection data code (next section) with yours settings:

• Change the value “YOUR_API_KEY” with the api key of your provider (variable apiKey)

• Change the value “YOUR_IP_ADDRESS” with the ip address of your Sentilo instance (variable ip)

• Change the value “YOUR_PORT” with the port of your Sentilo server instance port (variable port)

The code

You’ll should see this code in the editor:

#include <Ethernet.h>
#include <SPI.h>

#include "SentiloClient.h"

/***/
/***** SENTILO *****************************/
/***/
char* apiKey = "YOUR_API_KEY";
char* ip = "YOUR_IP_ADDRESS";
int port = YOUR_PORT;
char* componentId = "sample-component";

(continues on next page)

8.3. Arduino Tutorial 171

https://github.com/sentilo/sentilo-client-arduino
http://www.arduino.cc/en/guide/libraries

Sentilo Documentation, Release 1.9.0

(continued from previous page)

char* providerId = "samples-provider";
char* sensorId = "sample-sensor-arduino-01";

// The Sentilo Client object
SentiloClient sentiloClient = SentiloClient(ip, port);

/***/
/***** NETWORK *****************************/
/***/
const int networkConnectionTimeout = 30;

/***/
/***** GLOBAL VARS *************************/
/***/
const int generalCalibrationTimeout = 1000; // Wait after system setup is complete
String response = ""; // Rest call response (normally as JSON message)
int statusCode = -1; // Rest call return code (the HTTP code)

void setup() {
// Begin serial for debug purposes
Serial.begin(9600);

// Setup the Sentilo Client and the network connection
setupSentiloClient();

// Wait time for a general calibration
delay(generalCalibrationTimeout);

}

void loop() {
// Create the Observation object
SentiloClient::Observation observation;
observation.value = "This is a sample observation";

Serial.println("[loop] Publishing a sample observation...");

// Publish the observation to Sentilo Platform
statusCode = sentiloClient.publishObservation(providerId, sensorId,

→˓observation, apiKey, response);

// Read response status and show an error if it is necessary
if (statusCode !## 200) {

Serial.print("[loop] [ERROR] Status code from server after publish
→˓the observations: ");

Serial.println(statusCode);
Serial.print("[loop] [ERROR] Response body from server after publish

→˓the observations: ");
Serial.println(response);

}

Serial.println("[loop] Sample observation published!");
Serial.println("[loop] Program ended");

// The example has ended, so we are going to execute an infinite loop
while (true) {}

}

(continues on next page)

172 Chapter 8. Tutorials

Sentilo Documentation, Release 1.9.0

(continued from previous page)

/** Setup the Sentilo Client object, this process also configures the network
→˓connection **/
void setupSentiloClient() {

Serial.print("[setup] Connecting to network via DHCP ");
sentiloClient.dhcp();
for (int i = 0; i < networkConnectionTimeout; i++) {

Serial.print(".");
delay(100);

}
Serial.println(" done!");
Serial.println("[setup] Connection is now established!");

}

What can we see in this example?

• We are setting up the Serial channel for debug output

• Setup the SentiloClient object (sentiloClient), which configures the client and connects to the network

• Once we’re connected to the server, we publish a basic observation, with these contents: “This is a sample
observation”

– If the publish works properly, the system don’t return any special data

– Otherwise, it will show to you the system return code and message, if it is possible

• The test ends after publish only one observation

Second example: publishing sensors data as observations

In this case we’ll retrieve data from sensors (LDR and LM35), and then we’ll publish them as a observation, with a
message in JSON format, like that:

{"ldr":"{ldrValue}","lm35":"{lm35Value}"}

Where the ldrValue contains the LDR photocell value, and the lm35Value contains the LM35 temperature value.
Open the sample code in File > Examples > SentiloClient > SentiloClient-Example-02.

Connect the sensors and and other connections

Now, it is the time to connect the sensors and others elements.

See below:

8.3. Arduino Tutorial 173

Sentilo Documentation, Release 1.9.0

In the upper image, you can see how the components has been located:

• Connect the positive pin from Arduino (+5V) to the upper channel of the breadboard (red channel)

• Connect the negative pin from Arduino (GND) to the second channel of the breadboard (blue channel)

• LDR photocell sensor connection:

– Connect the LDR photocell between GND signal and A0 (Analog IO 0 from Arduino) with a dupont wire,
in this case, the orange color wire

– Connect the LDR pin that holds the orange wire with a 1KOhm resistor, and the other resistor pin to
Arduino +5V (red wire)

• LM35 temperature sensor:

– Connect the LM35 positive pin (left pin, front side) to Arduino +5V

– Connect the LM35 center pin (signal) to the A5 (Analog IO 5 from Arduino) with a dupont wire, in this
case, the orange color wire

– Connect the LM35 negative pin (right pin, front side) to Arduino GND

The code

You should see this code in the editor:

174 Chapter 8. Tutorials

Sentilo Documentation, Release 1.9.0

#include <Ethernet.h>
#include <SPI.h>

#include "SentiloClient.h"

/***/
/***** SENSORS *****************************/
/***/
int LDR = 0; // LDR input is A0
int LM35 = 5; // LM35 input is A5
const int ldrSetupTimeout = 10; // Time that LDR needs to be configures (dummy time)
const int lm35SetupTimeout = 10; // Time that LM35 needs to be configures (dummy time)

/***/
/***** SENTILO *****************************/
/***/
char* apiKey = "YOUR_API_KEY";
char* ip = "YOUR_IP_ADDRESS";
int port = YOUR_PORT;
char* componentId = "sample-component";
char* providerId = "samples-provider";
char* sensorId = "sample-sensor-arduino-02";

// The Sentilo Client object
SentiloClient sentiloClient = SentiloClient(ip, port);

/***/
/***** NETWORK *****************************/
/***/
const int networkConnectionTimeout = 30;

/***/
/***** GLOBAL VARS *************************/
/***/
const int generalCalibrationTimeout = 1000; // Wait after system setup is complete
const int loopTimeout = 60000; // Loop timeout, time between observations (in ms)
String response = ""; // Rest call response (normally as JSON message)
int statusCode = -1; // Rest call return code (the HTTP code)

boolean existsSensor = false;

void setup() {
// Begin serial for debug purposes
Serial.begin(9600);

// Setup the LDR sensor
setupLDR();

// Setup the LM35 sensor
setupLM35();

// Setup the Sentilo Client and network connection
setupSentiloClient();

// Wait time for a general calibration
delay(generalCalibrationTimeout);

}

(continues on next page)

8.3. Arduino Tutorial 175

Sentilo Documentation, Release 1.9.0

(continued from previous page)

void loop() {
// Get the LDR value
int ldrValue = getLdrValue();

// Get the LM35 value
float lm35Value = getLM35Value();

// Create the observation input message like this: {"ldr":"234","lm35":"24.5"}
String obsInputMsg =

"{\\\"ldr\\\":\\\"" + String(ldrValue) +
"\\\",\\\"lm35\\\":\\\"" + String(lm35Value) +
"\\\"}";

int bufLength = obsInputMsg.length() + 1;
char obsMsgBuffer[bufLength];
obsInputMsg.toCharArray(obsMsgBuffer, bufLength);

// Create the Observation object
SentiloClient::Observation observation;
observation.value = obsMsgBuffer;

// Debug on Serial the observations value. Note that we must scape special
→˓characters

Serial.print("[loop] Publishing actual sensors values as observations: ");
Serial.println(obsMsgBuffer);

// Publish the observation to Sentilo Platform
statusCode = sentiloClient.publishObservation(providerId, sensorId,

→˓observation, apiKey, response);

// Read response status and show an error if it is necessary
if (statusCode !## 200) {

Serial.print("[loop] [ERROR] Status code from server after publish
→˓the observations: ");

Serial.println(statusCode);
Serial.print("[loop] [ERROR] Response body from server after publish

→˓the observations: ");
Serial.println(response);

} else {
Serial.println("[loop] Sensors observations published!");

}

delay(loopTimeout);
}

/** Emulate a possible LDR initialization process, if it is necessary **/
void setupLDR() {

Serial.print("[setup] Setting up the LDR brightness sensor ");
for (int i = 0; i < ldrSetupTimeout; i++) {

Serial.print(".");
delay(100);

}
Serial.println(" done!");
delay(50);

}

/** Get the brightness value from th LDR **/
(continues on next page)

176 Chapter 8. Tutorials

Sentilo Documentation, Release 1.9.0

(continued from previous page)

int getLdrValue() {
return analogRead(LDR);

}

/** Emulate a possible LM35 initialization process, if it is necessary **/
void setupLM35() {

Serial.print("[setup] Setting up the LM35 temperature sensor ");
for (int i = 0; i < lm35SetupTimeout; i++) {

Serial.print(".");
delay(100);

}
Serial.println(" done!");
delay(50);

}

/** Get the LM 35 temperature value in Celsius degrees **/
float getLM35Value() {

int val = analogRead(LM35);
float mv = (val / 1024.0) * 5000;
float cel = mv / 10;
//float farh = (cel * 9) / 5 + 32;
return cel;

}

/** Setup the Sentilo Client object. This process also configures the network
→˓connection **/
void setupSentiloClient() {

// Connect via DHCP
Serial.print("[setup] Connecting to network via DHCP ");
sentiloClient.dhcp();
for (int i = 0; i < networkConnectionTimeout; i++) {

Serial.print(".");
delay(100);

}
Serial.println(" done!");
Serial.println("[setup] Connection is now established!");

}

What can we see in this example? There’re some additions compared with the first example.

• Setup Arduino and the SentiloClient is the same of the first sample

• We’re making a sensors setup, but in this case it isn’t necessary, so it only informs us in debug mode what is
happening in every moment. . .

• Into the loop

– We’re retrieving the LDR and LM35 values, and putting them into variables

– Once we’ve retrieved the sensors data, we’re mounting the new observation message, with value:
{"ldr":"{ldrValue}","lm35":"{lm35Value}"}

– The SentiloClient library gets the value and transforms it on a complete observation message using the
publishObservation method (see below)

• The sketch loops sleeps until loopTimeout millis has been reached, and then turns up and repeats the same
process of data publication (in this example the sleep time is 60000ms, 1 minute per loop / publish)

This is the observation sent by to the Sentilo platform:

8.3. Arduino Tutorial 177

Sentilo Documentation, Release 1.9.0

{"observations":[{
"value":"{\"ldr\":\"{ldrValue}\",\"lm35\":\"{lm35Value}\"}"

}]
}

If you want, you can include the timestamp variable in UTC format inside the observation object:

Observation observation;
observation.value = {"ldr":"382","lm35":"23.4"};
observation.timestamp = "05/05/2015T12:34:45";

And the message will be generated as:

{"observations": [{
"value":"{\"ldr\":\"382\",\"lm35\":\"23.4\"}",
"timestamp":"05/05/2015T12:34:45"

}]
}

As you can see, the library object Observation (struct type) offers you an abstraction. In the next sample we will see
them in working together with the Sensor object.

Third example: initialize sensor, create it in the catalog and publish observations continuously

In this third example we’ll see that how the SentiloClient library can create a sensor “on-the-fly” and publish observa-
tions continuously. Next, we’ll use the second example, plus a little bit of additional code that help us to check if the
sensor exists in the catalog, and if not create it before publish observations. Open the sample code in File > Examples
> SentiloClient > SentiloClient-Example-03.

The code

You should see this code in the editor:

#include <Ethernet.h>
#include <SPI.h>

#include "SentiloClient.h"

/***/
/***** SENSORS *****************************/
/***/
int LDR = 0; // LDR input is A0
int LM35 = 5; // LM35 input is A5
const int ldrSetupTimeout = 10; // Time that LDR needs to be configures (dummy time)
const int lm35SetupTimeout = 10; // Time that LM35 needs to be configures (dummy time)

/***/
/***** SENTILO *****************************/
/***/
char* apiKey = "YOUR_API_KEY";
char* ip = "YOUR_IP_ADDRESS";
int port = YOUR_PORT;
char* componentId = "sample-component";
char* providerId = "samples-provider";

(continues on next page)

178 Chapter 8. Tutorials

Sentilo Documentation, Release 1.9.0

(continued from previous page)

char* sensorId = "sample-sensor-arduino-03";

// The Sentilo Client object
SentiloClient sentiloClient = SentiloClient(ip, port);

/***/
/***** NETWORK *****************************/
/***/
const int networkConnectionTimeout = 30;

/***/
/***** GLOBAL VARS *************************/
/***/
const int generalCalibrationTimeout = 1000; // Wait after system setup is complete
const int loopTimeout = 60000; // Loop timeout, time between observations
→˓publications (in ms)
String response = ""; // Rest call response (normally as JSON message)
int statusCode = -1; // Rest call return code (the HTTP code)

boolean existsSensor = false;

void setup() {
// Begin serial for debug purposes
Serial.begin(9600);

// Setup the LDR sensor
setupLDR();

// Setup the LM35 sensor
setupLM35();

// Setup the Sentilo Client
// and network connection
setupSentiloClient();

// Setup the Sentilo sensor
// and create it if doesn't exists
setupSentiloSensor();

// Waiting for the next release of the observation
delay(generalCalibrationTimeout);

}

void loop() {
if (existsSensor) {

// If the sensor exists,
// we can start publishing observations

// Get the LDR value
int ldrValue = getLdrValue();

// Get the LM35 value
float lm35Value = getLM35Value();

// Create the observation input message
// like this: {"ldr":"234","lm35":"24.5"}
String obsInputMsg =

(continues on next page)

8.3. Arduino Tutorial 179

Sentilo Documentation, Release 1.9.0

(continued from previous page)

"{\\\"ldr\\\":\\\"" + String(ldrValue) +
"\\\",\\\"lm35\\\":\\\"" + String(lm35Value) +
"\\\"}";

int bufLength = obsInputMsg.length() + 1;
char obsMsgBuffer[bufLength];
obsInputMsg.toCharArray(obsMsgBuffer, bufLength);

// Create the Observation object
SentiloClient::Observation observation;
observation.value = obsMsgBuffer;

// Debug on Serial the observations value
// Note that the message includes slashes (\) because we must scape

→˓special characters as "
Serial.print("[loop] Publishing actual sensors values as

→˓observations: ");
Serial.println(obsMsgBuffer);

// Publish the observation to Sentilo Platform
statusCode = sentiloClient.publishObservation(providerId, sensorId,

→˓observation, apiKey, response);

// Read response status and show an error if it is necessary
if (statusCode !## 200) {

Serial.print("[loop] [ERROR] Status code from server after
→˓publish the observations: ");

Serial.println(statusCode);
Serial.print("[loop] [ERROR] Response body from server after

→˓publish the observations: ");
Serial.println(response);

} else {
Serial.println("[loop] Sensors observations published!");

}

// Waiting for the next loop
delay(loopTimeout);
} else {

// If the sensor does not exist and it could
// not be created in the catalog, we must stop running
Serial.println("[loop] [ERROR] Oops! The sensor doesn't exists, so I

→˓can't publish data to it...");
Serial.println("[loop] [ERROR] I'm sorry with you, but now I'm going

→˓to halt...");
Serial.println("[loop] [ERROR] Bye!");
while (true) { }

}
}

// Emulate a possible LDR initialization process, if it is necessary
void setupLDR() {

Serial.print("[setup] Setting up the LDR brightness sensor ");
for (int i = 0; i < ldrSetupTimeout; i++) {

Serial.print(".");
delay(100);

}
Serial.println(" done!");
delay(50);

(continues on next page)

180 Chapter 8. Tutorials

Sentilo Documentation, Release 1.9.0

(continued from previous page)

}

// Get the brightness value from th LDR
int getLdrValue() {

return analogRead(LDR);
}

// Emulate a possible LM35 initialization process, if it is necessary
void setupLM35() {

Serial.print("[setup] Setting up the LM35 temperature sensor ");
for (int i = 0; i < lm35SetupTimeout; i++) {

Serial.print(".");
delay(100);

}
Serial.println(" done!");

delay(50);
}

// Get the LM 35 temperature value in Celsius degrees
float getLM35Value() {

int val = analogRead(LM35);
float mv = (val / 1024.0) * 5000;
float cel = mv / 10;
//float farh = (cel * 9) / 5 + 32;
return cel;

}

// Setup the Sentilo Client object
// This process also configures the network connection
void setupSentiloClient() {

// Connect via DHCP
Serial.print("[setup] Connecting to network via DHCP ");
sentiloClient.dhcp();
for (int i = 0; i < networkConnectionTimeout; i++) {

Serial.print(".");
delay(100);

}
Serial.println(" done!");
Serial.println("[setup] Connection is now established!");

}

// Setup the Sentilo Sensor (this Arduino)
// If the sensor doesn't exists in the catalog, create it
void setupSentiloSensor() {

Serial.println("[setup] Retrieving catalog info from Sentilo and search for
→˓the sensor...");

// Get catalog data for the provider with the supplied api key
statusCode = sentiloClient.getCatalog(apiKey, response);

// If the server status response is not ok, show the error
if (statusCode !## 200) {

Serial.print("[setup] [ERROR] Status code from server getting
→˓catalog: ");

Serial.println(statusCode);
Serial.print("[setup] [ERROR] Response body from server getting

→˓catalog: ");
(continues on next page)

8.3. Arduino Tutorial 181

Sentilo Documentation, Release 1.9.0

(continued from previous page)

Serial.println(response);
} else {

// If we get a correct response, we must search the sensor
if (find_text(sensorId, response) >## 0) {

// The sensor is in the catalog
Serial.println("[setup] The sensor is in the catalog");
existsSensor = true;

} else {
// The sensor isn't in the catalog, so we must create it
Serial.println("[setup] The sensor isn't in the catalog, so

→˓let register it now...");

// Create the basic Sentilo Sensor Object
SentiloClient::Sensor sensor;
sensor.sensor = sensorId;
sensor.type = "status";
sensor.dataType = "TEXT";
sensor.component = componentId;
sensor.componentType = "generic";
sensor.location = "sensorLat sensorLng";

// Call the SentiloClient Register Sensor function
statusCode = sentiloClient.registerSensor(sensor, providerId,

→˓apiKey, response);

// Read the server status response
if (statusCode 200) {

// If ok, the sensor has been yet created
existsSensor = true;

} else {
// If nok, then we can't continue with the program
existsSensor = false;
Serial.print("[setup] [ERROR] Status code from server

→˓getting catalog: ");
Serial.println(statusCode);
Serial.print("[setup] [ERROR] Response body from

→˓server getting catalog: ");
Serial.println(response);

}
}

}
}

// Auxiliary function for search text in a String
int find_text(String needle, String haystack) {

int foundpos = -1;
for (int i = 0; (i < haystack.length() - needle.length()); i++) {

if (haystack.substring(i, needle.length() + i) needle) {
foundpos = i;

}
}
return foundpos;

}

And finally, in the last example, we can see:

• Initialization is the same that in the other examples

182 Chapter 8. Tutorials

Sentilo Documentation, Release 1.9.0

• Before ending the initialization process, we search for the sensor in the catalog:

– Into the setupSentiloSensor() method, the sentiloClient.getCatalog retrieves all the catalog data related to
the provider, so we can now search for the value of our sensor, in this case, sample-sensor-arduino-03,
and we see that it doesn’t exists in the catalog (you must not create it manually!)

– Then, create it with sentiloClient.registerSensor, including a Sensor object (see values below), if you
want to publish its location don’t forget to initialize the sensorLat and sensorLng values!

– Once the sensor is created, we end the setup process and starts the loop

– If there is any error registering the sensor, the serial prints the error message and the server status code in
the console

• In the loop, like in Example 2, retrieve sensors data (LDR and LM35), and publish them as new sensor observa-
tion

Next, there is an example of Sensor object message with the example values:

SentiloClient::Sensor sensor;
sensor.sensor = "sample-sensor-arduino-03";
sensor.type = "status";
sensor.dataType = "TEXT";
sensor.component = "sample-component";
sensor.componentType = "generic";
sensor.location = "41,385063 2,1734034";

And before invoking the Sentilo API Rest platform, the SentiloClient library transforms this object in a JSON message
like this:

{"sensors":[{
"sensor":"sample-sensor-arduino-03",
"description":"",
"type":"status",
"dataType":"TEXT",
"unit":"",
"component":"sample-component",
"componentType":"generic",
"componentDesc":"",
"location":"41,385063 2,1734034",
"timeZone":"CET"

}]
}

As you can see, the type is generic and the data type is text, because this is the best way to publish any data without
any format problem.

On this page you will find several tutorials about how to connect to Sentilo using various existing platforms and
languages.

8.3. Arduino Tutorial 183

Sentilo Documentation, Release 1.9.0

Java library that allows access to Sentilo Platform through its REST API Client

Independent platform library created with NodeJS that allows embedded architectures, such as Raspberry Pi, to com-
municate with Sentilo Platform through its REST API Client

A simple Arduino library that allows connect with the Official Ethernet Shield to the Sentilo Platform

184 Chapter 8. Tutorials

tutorials/java_client_tutorial.html
./tutorials/raspberrypi_tutorial.html
./tutorials/arduino_tutorial.html

CHAPTER 9

Technical FAQ

9.1 In which platforms has been Sentilo tested ?

The first deployment for the Barcelona City Council has been tested in the following infrastructure:

• Four virtual machines, two for the front-ends and another two for the back-end

• All of them use as operating system Ubuntu server LTS 16.04

• The real time database server(Redis) works with 32 GB of memory and 36 GB of hard disk

• The other three servers works with 4 GB of memory and 16 GB of hard disk

Another deployment configuration should work properly, always keeping in mind the expected load by the system.
There is also a virtual machine ready for use that can be used for testing purposes.

9.2 I successfully published an observation, but I cannot see the data
in catalog.

Check that the Catalog and Sentilo API Server are in the same timezone, for example in UTC. Make sure the sentilo-
server is executed with the following VM option:

-Duser.timezone=UTC

Also, make sure that the Tomcat that hosts the Catalog application has the same option, for example en $JAVA_OPTS
variable.

185

./use_a_virtual_machine.html

Sentilo Documentation, Release 1.9.0

9.3 Maps is not showing up in Catalog application

Recently Google changed it policy regarding Maps key. Please go to https://developers.google.com/maps/
documentation/javascript/get-api-key and create one.

You can define the API key inside the sentilo/sentilo-catalog-web/src/main/resources/
properties/catalog-config.properties configuration file:

Google API key to use Google Maps
google.api.key=<your key>

Remember you’ll have to recompile sentilo-catalog-web redeploy the sentilo-catalog-web.war after that.

9.4 I created a provider and immediately after that, an observation
using the new provider’s token is rejected with 401 “Invalid cre-
dential”

The providers are activated in a background job that runs every 5 minutes. Please wait a moment :-)

Another possible reason is that the Sentilo API server started before the Catalog application (probably deployed on
your Tomcat). At startup, the API server performs a call to /sentilo-catalog-web/api/entities/permissions in order to
mirror the permissions stored in MongoDB with Redis. If this call fails because the sentilo-catalog-web is not deployed
yet, the permissions are not correctly created. To resolve the issue, reboot your Sentilo and ensure that the API server
starts always after the sentilo-catalog-web is fully deployed.

9.5 The command mvn package appassembler:assemble fails.

You have to execute the command in the directory of the component you want to install.

9.6 I think I installed Sentilo. How can I confirm all is up & running?.

You can use this script:

./scripts/testServerStatus.sh

You also might want to check Platform Testing

If you installed everything on your local machine, you can access the catalog at http://localhost:8080/
sentilo-catalog-web and the REST API at http://localhost:8081

186 Chapter 9. Technical FAQ

https://developers.google.com/maps/documentation/javascript/get-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key
./platform_testing.html
http://localhost:8080/sentilo-catalog-web
http://localhost:8080/sentilo-catalog-web
http://localhost:8081

CHAPTER 10

Platform Testing

To check everything is properly configured and running, you can run the following set of tests.

10.1 Infrastructure servers test

10.1.1 Status page

To validate that all services are up and running (Redis, MongoDB and PubSub), you can access to the following
catalog page:

http://ip:port/sentilo-catalog-web/status/

In this screen you can check the status independently for each Sentilo main service. In each case it will be indicated,
through a green status message, the correct operation of the same. In the event either it is not possible to connect to

187

Sentilo Documentation, Release 1.9.0

the service or there is an error, an error message will be displayed .

Next screenshot shows to you an error connecting to the API:

Deactivating the status page

By default, the status page is enabled in your Sentilo instance.

To disable it, you must provide a JVM Tomcat parameter:

-Dsentilo.state_page.enabled=false

Then, the status page will be inaccessible:

10.2 Postman tests

To test the API REST services individually, you can also test end-end functionality with Postman, or if you prefer CLI,
via Newsman:

newman run postman-script.json -e postman-script-env.json --delay-request 5000 --
→˓reporters cli,json --reporter-json-export outputfile.json

where files postman-script.json and postman-script-env.json are located in subdirectory scripts/test from your local
copy of Sentilo.

This script provides tests all Sentilo REST API resources and can serve you also as example of the API usage.

188 Chapter 10. Platform Testing

https://www.getpostman.com
https://www.getpostman.com/docs/postman/collection_runs/command_line_integration_with_newman
https://github.com/sentilo/sentilo/tree/master/scripts/test

Sentilo Documentation, Release 1.9.0

Note: Before executing tests with newman, you should review the values of the variables api_url, api_port, provider
and provider_token in the environment file postman-script-env.json so that they match your Sentilo instance

Before executing the postman script / or you should replace default values (extracted from the init_test_data.js file)
with the ones that you want to use to execute it (api_url, api_port, provider and provider_token)

10.2. Postman tests 189

Sentilo Documentation, Release 1.9.0

190 Chapter 10. Platform Testing

CHAPTER 11

Use a Virtual Machine

A Sentilo sample instance is available for testing purposes distributed as a Open Virtual Appliance file (OVA).

The appliance is available for download here.

It has been tested with Virtual Box v5 and v6.

Note: Mac OS users might check if the downloaded file has the original .ova extension. If it has a .ovf extension,
you have to rename it back to .ova, otherwise it possibly won’t import to VirtualBox (the import will stuck forever).

The appliance contains the 1.9.0 Sentilo release and runs Ubuntu Server 18.04.

Components installed:

• Sentilo Catalog (web application)

• Sentilo Platform Server (REST API)

• Sentilo Relational Agent (saves the data to mySQL)

• Sentilo Alert Agent

• Sentilo Location Updater Agent

The virtual machine credentials are sentilo/sentilo.

All Sentilo services are started automatically. The REST API server starts 90 seconds after Tomcat, because it needs
to start after the Catalog is deployed. The services are exposed via NAT on localhost:

First steps:

• Review the README file located in /home/sentilo.

• The Catalog Console webapp will be ready to access in: http://localhost:8080/sentilo-catalog-web/ with a access
credentials: admin/1234

• The API Rest endpoint will be listening for requests in: http://localhost:8081

• SSH server is listening on localhost 2222. Access credentials are sentilo/sentilo

191

https://en.wikipedia.org/wiki/Open_Virtualization_Format
https://drive.google.com/file/d/1pu1GorRtaNC9kY208Obt-9dUNoUlbEnZ/view?usp=sharing
http://localhost:8080/sentilo-catalog-web/
http://localhost:8081

	Setup
	Quickstart
	API Docs
	Architecture
	Integrations
	Catalog and Maps
	Multi Tenant
	Tutorials
	Technical FAQ
	Platform Testing
	Use a Virtual Machine

