

Sentilo Documentation

Contents:

	Setup

	Quickstart

	API Docs

	Architecture

	Integrations

	Catalog and Maps

	Multi Tenant

	Tutorials

	Technical FAQ

	Platform Testing

	Sentilo Official Docker Images

Setup

This guide describes how to: download, configure, compile and install
the last version of Sentilo in your own runtime environment. Moreover,
it details which are the infrastructure elements necessary for running
Sentilo and how should be their default configuration settings. It’s
assumed you have the skills to configure and install the necessary
software base(Operating System, Maven,JDK, Mongo DB, Redis, etc).

The main topics are:

	Prerequisites: describes the software elements that have to be
installed before download the code.

	Download and build: explains the steps to obtain the Sentilo
code, to adapt it and how to build the platform artifacts.

	Platform infrastructure: describes the mandatory infrastructure
components for running Sentilo and its default configuration
settings.

	Deploy the artifacts: describes the necessary steps to deploy all
the Sentilo modules

Prerequisites

Sentilo uses Maven as a mechanism for building and managing the
dependencies of the platform. In order to build Sentilo, it is
necessary to ensure the next set of prerequisites:

	JDK 1.8.x +

	Git (optional)

	Maven 3 +

	Ensure that the the Java SDK and Maven executables are accessible
using your PATH environment variable.

Download and build code

The Sentilo code must be downloaded from Github. Once downloaded, you
can build it using a script named buildSentilo.sh which constructs the
Sentilo artifacts “out-of-the-box”.

Download the source code from Github

The source code of the project can be obtained from git, cloning the
remote project in a local directory named sentilo:

git clone https://github.com/sentilo/sentilo.git sentilo

An alternative method is to download a ZIP file from github repository
and decompress it in a folder named sentilo:

https://github.com/sentilo/sentilo/archive/master.zip

In both cases, we will finally have a new directory named sentilo with
the source code.

Compiling and build artifacts

Without changing the default configuration

If you want to build Sentilo out-of-the-box (i.e. build all artifacts
that define the Sentilo platform without changing any of the default
settings that are defined), we distribute a script named
./scripts/buildSentilo.sh which can be used to build Sentilo from the
command line.

This script compiles the code and build the artifacts from scratch, but
it doesn’t deploy them in the execution environments. This process must
be done manually by different reasons, for example:

	The deployment environment could be distributed in different servers.
In example, Tomcat server and Pub/Subscribe server.

	it’s not required to install all the components, like the relational
database agent.

Once this script is executed, the result of the construction of the
artifacts will be located, by default, in the directory ../sentilo-deploy-artifacts
(local from current directory).

The content of the sentilo-deploy-artifacts directory will be:

	conf: contains all the Sentilo configuration files, both for the service, the catalog application and for all the agents

	sentilo-agent-activity-monitor: contains the directory structure resulting from running mvn appassembler:assemble on the sentilo-agent-activity-monitor module

	sentilo-agent-alert: contains the directory structure resulting from running mvn appassembler:assemble on the sentilo-agent-alert module

	sentilo-agent-federation: contains the directory structure resulting from running mvn appassembler:assemble on the sentilo-agent-federation module

	sentilo-agent-historian: contains the directory structure resulting from running mvn appassembler:assemble on the sentilo-agent-historian module

	sentilo-agent-kafka: contains the directory structure resulting from running mvn appassembler:assemble on the sentilo-agent-kafka module

	sentilo-agent-location-updater: contains the directory structure resulting from running mvn appassembler:assemble on the sentilo-agent-location-updater module

	sentilo-agent-metrics-monitor: contains the directory structure resulting from running mvn appassembler:assemble on the sentilo-agent-metrics-monitor module

	sentilo-agent-relational: contains the directory structure resulting from running mvn appassembler:assemble on the sentilo-agent-relational module

	sentilo-catalog-web: contains the war of the web application once packaged

	sentilo-platform-server: contains the directory structure resulting from running mvn appassembler:assemble on the sentilo-platform-server module

Changing default settings

If you want modify the code before to build it, you should import it
into an Eclipse workspace with maven plug-in installed. Below we explain
how to do it by using the M2E plugin.

	Open the Eclipse workspace to import the code:

	Go to File> Import> Existing Maven Projects

	Select ./sentilo as the root directory

	Select all projects and import

Warning: be sure that JDK 1.8, or later, is correctly configured in
your Eclipse environment.

After modifying the code, to compile and build the artifacts, our
recommendation is to use the above mentioned buildSentilo.sh script.

Platform infrastructure

Before describing how to install all the Sentilo components, we’re going
to explain how to configure each element of the infrastructure.

Sentilo uses the following infrastructure elements (they are grouped
into two categories):

	Mandatory

	Redis 6.2.2

	MongoDB 4.4.2

	Tomcat 8.5.32 +

	Optional

	MySQL 5.5.x (Sentilo has been tested on MySQL 5.5.34 but you could
use your favourite RDBMS) It is only necessary if you want to
install the relational agent

	Elasticsearch 6+ It is only necessary if you want to install
the activity-monitor agent.

	openTSDB 2.2.0 + It is only necessary if you want to install the
historian agent

You must ensure that you have all these elements installed properly (you
can find information on how to install them in each provider site).

Below we explain the default settings for each Sentilo module.

Default settings

Sentilo configuration uses the Spring and Maven profiles to allow its
customization depending on the runtime environment. By default, the
platform comes with a predefined profile named dev, which considers
that each of these infrastructure elements are installed on the same
machine and listening in the following ports:

	Redis: 6379

	MongoDB: 27017

	Tomcat: 8080

	MySQL: 3306

	Elasticsearch: 9200

	openTSDB: 4242

The default configuration for the entire platform is located in the file:
/sentilo-common/src/main/resources/properties/sentilo.conf.

All other specific settings can be found in the subdirectory
/src/main/resources/properties of each platform’s module.

In general, Sentilo’s configuration is described in the sentilo.conf
file, while the rest of the components are described in their own .conf file.

The sentilo.conf file must be deployed in the default directory
/etc/sentilo, in which the necessary parameters according to our
installation must be overwritten later.

The other configuration files for agents, for example, can be overwritten in
the same way, deploying them in the same directory specified above, and with
the specific name set by each of the agents.

Therefore, we will have the files with the base configuration inside the package
of each one of the modules (classpath) and the configuration files with the
specific values displayed in the /etc/sentilo directory, which will overwrite
the original ones. In this way, we can change any Sentilo parameterization just
by modifying the deployed file and restarting the instance:

[image: _images/conf_files_diagram.png]
For example, here we can see a default configuration (first lines) and the
overridden values for different execution environments for Redis host:

-- classpath:sentilo.conf
sentilo.version=2.1.0
sentilo.redis.host=127.0.0.1

-- /etc/sentilo/sentilo.conf for DSV environment
sentilo.redis.host=192.168.2.106

-- /etc/sentilo/sentilo.conf for PRE environment
sentilo.redis.host=10.65.124.22

Each module will define the location of its configuration file within the
xxx-properties-context.xml file.

For example, this is the case of the relational agent:

<context:property-placeholder ignore-unresolvable="true" properties-ref="sentiloConfigProperties"/>

<util:properties id="sentiloConfigProperties" location="classpath*:properties/sentilo.conf,
 classpath*:properties/sentilo-agent-relational.conf, file:${sentilo.conf.dir}/sentilo.conf,
 file:${sentilo.conf.dir}/sentilo-agent-relational.conf" ignore-resource-not-found="true"/>

Note: The variable ${sentilo.conf.dir} is resolved in compilation time
and its default value is /etc/sentilo

These are the default params for the sentilo.conf file:

	Param

	Default value

	Description

	sentilo.master.application.id

	sentilo-catalog

	Identification of the master application of the catalog, application that has administrative rights over all the rest

	sentilo.version

	2.0.0-HA

	Indicates the deployed version of Sentilo, and can be found both in the source code of a catalog page and in the response headers to an API call

	sentilo.redis.password

	sentilo

	Redis access password (same value as the requirepass parameter in the Redis configuration)

	sentilo.redis.expire.key.seconds

	0

	Lifetime of data in Redis: after this time the data expires and can no longer be retrieved via the API. A value of 0 indicates that they do not expire

	sentilo.redis.connTimeout

	5000(ms)

	Timeout waiting in the execution of any request to Redis

	sentilo.redis.client.maxTotal

	10

	Maximum number of connections in the pool

	sentilo.redis.client.maxIdle

	10

	Maximum number of idle connections in the pool

	sentilo.redis.client.maxWaitMillis

	-1

	Maximum timeout (ms) for a new connection. -1 indicates no maximum

	sentilo.redis.client.testOnBorrow

	true

	Indicates whether to validate a connection from the pool before reusing it

	sentilo.redis.client.testOnCreate

	true

	Same as the previous one, but at the time of creation

	sentilo.redis.client.testOnReturn

	false

	Same as the previous one but when returning the connection to the pool

	sentilo.redis.client.testWhileIdle

	true

	Same as above but the validation is performed while the connection remains unused in the pool (internally the validation is executed every 30s, not configurable)

	sentilo.redis.host

	127.0.0.1

	IP of the machine where the Redis server is (in standalone mode)

	sentilo.redis.port

	6379

	Port on which the Redis server is listening for requests (in standalone mode)

	sentilo.redis.cluster.nodes

	127.0.0.1:6379

	List with the addresses (ip:port) of the different nodes of the Redis cluster

	sentilo.redis.cluster.maxRedirects

	3

	Maximum number of redirects to follow between nodes in a request to the cluster

	sentilo.mongodb.host

	127.0.0.1

	IP of the machine on which the node with PRIMARY role is installed, in the case of a cluster, or simply the server

	sentilo.mongodb.port

	27017

	Port on which the MongoDB server is listening for requests

	sentilo.mongodb.database

	sentilo

	Name of the db to connect to

	sentilo.mongodb.user

	sentilo

	User to use when authenticating to the MongoDB server

	sentilo.mongodb.password

	sentilo

	Password to use when authenticating to the MongoDB server

	sentilo.mongodb.cluster-type

	STANDALONE

	Instance mode. Switch to REPLICA_SET in case of cluster

	sentilo.mongodb.rs

	rs_sentilo

	Name of replica set in case of cluster

	sentilo.mongodb.pool.max-connections

	100

	Maximum number of connections that can be established to MongoDB from a module

	sentilo.mongodb.application-name

	sentilo

	Name of the module that establishes the connection to MongoDB (for auditing purposes. Viewed in the MongoDB log)

	sentilo.catalog.rest.endpoint

	http://127.0.0.1:8080/sentilo-catalog-web/

	API URL Rest of the catalog (used internally by the rest of the modules)

	sentilo.catalog.rest.credentials

	platform_user:sentilo

	Credentials (user:password) to use in the authentication of the rest of the catalog API (must be the credentials of a catalog user with the PLATFORM_USER role)

	sentilo.api.rest.endpoint

	127.0.0.1:8081

	Sentilo Rest API URL (used internally by the rest of the modules)

	sentilo.api.rest.identity.key

	
	Token to be used internally in calls to Sentilo’s Rest API. Must match the entity token given in the sentilo.api.rest.identity.key parameter

	sentilo.agent.pending_events_job.batch

	50

	Maximum size (N) of the batch of pending messages to be retrieved and processed from the PEL (pending event list) of each agent in each call. The process runs iteratively in batches of size N until the list is empty

	sentilo.agent.pending_events_job.delay

	30000 (ms)

	Waiting time between executions of the job that is responsible for processing pending messages in the PEL of an agent

	sentilo.agent.batch.size

	10

	Batch size in which an agent processes incoming messages and keeps them in memory

	sentilo.agent.batch.workers.size.min

	0

	Minimum number of workers to be used by an agent to process incoming messages queued in memory

	sentilo.agent.batch.workers.size.max

	3

	Maximum number of workers to be used by an agent to process incoming messages queued in memory

	sentilo.agent.batch.max.retries

	1

	Number of retries an agent performs before rejecting a batch of messages and saving them to the Redis PEL for further processing

Redis settings

Sentilo default settings consider Redis will be listening on port 6379,
host 127.0.0.1, and with the parameter
requirepass [http://redis.io/commands/AUTH] enabled and with value
sentilo.

If you change this behaviour, you need to modify the sentilo.conf file,
by editing following properties:

sentilo.redis.host=127.0.0.1
sentilo.redis.port=6379
sentilo.redis.password=sentilo

See other available Redis settings in above table, under sentilo.redis.* base path.

MongoDB settings

Sentilo default settings consider MongoDB will be listening on
127.0.0.1:27017, and requires an existing database named sentilo,
created before starting the platform, with authentication
enabled [http://docs.mongodb.org/v4.0/core/access-control/] and with
login credentials preconfigured as sentilo/sentilo (username~:sentilo,
password~:sentilo).

If you change this behaviour, you need to modify the sentilo.conf file,
by editing following properties:

sentilo.mongodb.host=127.0.0.1
sentilo.mongodb.port=27017
sentilo.mongodb.user=sentilo
sentilo.mongodb.password=sentilo

See other available MongoDB settings in above table, under sentilo.mongodb.* base path.

Data load

Moreover, you need to load on sentilo database the basic set of data
needed to run the platform. The data include, among other things:

	An user admin: user for log in into the catalog webapp as
administrator.

	An user sadmin: user for log in into the catalog webapp with role
super-admin.

	An user platform_user: internal user used by the platform to
synchronize information between its components.

To do this, you must load the data defined in the file:

./scripts/mongodb/init_data.js

For example, in your MongoDB machine, you should execute the following
command from the directory where the file is located:

mongo -u sentilo -p sentilo sentilo init_data.js

Note

The file init_data.js contains
default passwords and tokens (which are ok for run Sentilo in a
test environment). In order to avoid compromising your platform, we
recommend to change them before installing Sentilo in a production
environment.

If you change default values in the /sentilo/scripts/mongodb/init_data.js file and load them to
MongoDB, you will have to modify the following properties, located in sentilo.conf file, and restart Sentilo. So, following
JS code from init_data.js :

Corresponds with:

sentilo.api.rest.identity.key=c956c302086a042dd0426b4e62652273e05a6ce74d0b77f8b5602e0811025066
sentilo.catalog.rest.credentials=platform_user:sentilo

, being sentilo.api.rest.identity.key the token of a sentilo-catalog application, and sentilo.catalog.rest.credentials value
is a combination of user platform_user and it’s password.

Test data load

In order to validate the correct installation of the platform, we could
load a set of test data. These data includes, among other things: sensor
types, component types, apps and providers.

These data is defined in the file:

./scripts/mongodb/init_test_data.js

and, as pointed above, you should run the following command to load it:

mongo -u sentilo -p sentilo sentilo init_test_data.js

MySQL settings

Note

This software is mandatory only if you want to export the published
events to a relational database using the Relational Database Agent. Otherwise, you
can skip this step. Please, check this out for
more info.

Sentilo default settings consider MySQL server will be listening on
127.0.0.1:3306, and requires an existing database named sentilo,
created before starting the platform, with authentication enabled and
accessible using credentials sentilo_user/sentilo_pwd
(username~:sentilo_user, password~:sentilo_pwd).

If you change this behaviour, you need to modify the following
properties:

sentilo.agent.relational.ds.jdbc.driverClassName=com.mysql.jdbc.Driver
sentilo.agent.relational.ds.url=jdbc:mysql://127.0.0.1:3306/sentilo
sentilo.agent.relational.ds.username=sentilo_user
sentilo.agent.relational.ds.password=sentilo_pwd

configured in the file:

sentilo-agent-relational/src/main/resources/properties/sentilo-agent-relational.conf

Creating the tables

Once we have MySQL configured, and the database sentilo created, the
next step is to create the database tables required to persist
historical platform data.

At the following directory of your Sentilo installation:

sentilo-agent-relational/src/main/resources/bd

you’ll find the script to create these tables.

Tomcat settings

Sentilo default settings consider Tomcat will be listening on
127.0.0.1:8080.

If you change this behaviour, you need to modify the following property:

sentilo.catalog.rest.endpoint=http://127.0.0.1:8080/sentilo-catalog-web/

configured in the sentilo.conf file.

Your Tomcat should also be started with the user timezone environment
variable set as UTC. To set Timezone in Tomcat, the startup script (e.g.
catalina.sh or setup.sh) must be modified to include the following
code:

-Duser.timezone=UTC

API server (Subscription/publication) settings

Sentilo default settings consider subscription/publication server
(a.k.a. PubSub server) will be listening on 127.0.0.1:8081

If you change this behaviour, you need to modify the following
properties:

sentilo.api.rest.endpoint=127.0.0.1:8081

configured in the sentilo.conf file.

Configuring logs

Sentilo uses slf4j and logback as trace frameworks. The
configuration can be found in logback.xml file, located in the
subdirectory src/main/resources of sentilo-common module of the
platform.

By default, all platform logs are stored in the directory
/var/log/sentilo

Platform installation

Once you have downloaded the code and you have modify, compile and built
it, the next step is to deploy Sentilo artifacts. The platform has five
artifacts:

	Web Application Catalog (is mandatory)

	Server publication and subscription (is mandatory)

	Alarms agent is not strictly mandatory, however you’ll need it if you want to provide alerts.

	Location updater agent is not strictly mandatory, however you’ll need it if you want to update locations
in case you have mobile components.

	All other agents (are optional):

Installing the Web App Catalog

After build Sentilo, to install the Web App, you just need to deploy the
WAR artifact in your Tomcat server, i.e., copy the WAR artifact into the
webapps subdirectory of your Tomcat server.

You will find the WAR artifact at the following subdirectory:

./sentilo-catalog-web/target/sentilo-catalog-web.war

Installing API server (subscription/publication)

After build Sentilo (see Compiling and build artifacts), to install the API
(pub/sub) server, you need to follow the following steps:

	Into the directory ../sentilo-deploy-artifacts/sentilo-platform-server/
you’ll find two subdirectories named repo and bin:

	repo directory contains all libraries needed to run the process

	bin directory contains the script (sentilo-server) needed to
initialize the process (there are two scripts, one for Linux systems
and one for Windows)

	Copy these two directories in the root directory where you want to
install this component (for example: /opt/sentilo-server).

	Once copied, for starting the process you just need to run the
script:

$ <path_to_sentilo-server>/bin/sentilo-server

Installing agents

As have been mentioned previously, all agents are optional and you are
free to choose which of them will be deployed, depending on your
specific needs. Agents are internal modules oriented to expand the
platform functionality without having to alter its core. You will find
more information about them in the Integrations
section of our documentation.

The buildSentilo.sh script builds also all agents. If you decide to install some of them,
you just have to copy the contents of the sentilo-deploy-artifactts agent’s directory
to the path you want the agent to be installed (see Compiling and build artifacts).

For example, Alert agent would be installed like this:

	In the directory ../sentilo-deploy-artifacts/sentilo-agent-alert/ you’ll
find two subdirectories named repo and bin:

	repo directory contains all libraries needed to run the process

	bin directory contains the script (sentilo-agent-alert-server)
needed to initialize the process (there are two scripts, one for
Linux systems and one for Windows)

	Copy these two directories in the root directory where you want to
install this component (for example: /opt/sentilo-agent-alert).

	Once copied, for starting the process you just need to run the
following script:

$ <path-to-agent-alert>/bin/sentilo-agent-alert-server

All other agents follow the exact same directory structure.

Note

Agent configuration can be done at any time by modifying it own agent-xxx.conf
file and restarting it. It is documented in their respective page

Enable multi-tenant instance

In order to enable multi-tenant feature you need to ensure that your
Sentilo version is at least 1.5.0. Otherwise you will have to
upgrade [https://github.com/sentilo/sentilo/wiki/How-to-upgrade-Sentilo]
your Sentilo instance.

Once the above requirement is fulfilled, you only need to do the
following steps:

Modify your Tomcat startup script

You should modify your Tomcat startup script (e.g
%TOMCAT_HOME%/bin/catalina.sh or %TOMCAT_HOME%/bin/setenv.sh) to add
a new JVM property:

-Dsentilo.multitenant=true

Once you have added the JVM property, you must restart your Tomcat
server.

Edit the Catalog web.xml file

The next step is to edit the Catalog file web.xml located at:

sentilo-catalog-web/src/main/webapp/WEB-INF/web.xml

You will find some lines that are commented into this file which are
needed to enable the multi-tenant feature. Therefore you should
uncomment them:

<!--
 <filter>
 <filter-name>UrlRewriteFilter</filter-name>
 <filter-class>org.tuckey.web.filters.urlrewrite.UrlRewriteFilter</filter-class>
 <init-param>
 <param-name>logLevel</param-name>
 <param-value>slf4j</param-value>
 </init-param>
 </filter>

 <filter>
 <filter-name>tenantInterceptorFilter</filter-name>
 <filter-class>org.sentilo.web.catalog.web.TenantInterceptorFilter</filter-class>
 </filter>
-->

<!--
 <filter-mapping>
 <filter-name>tenantInterceptorFilter</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>REQUEST</dispatcher>
 </filter-mapping>
 <filter-mapping>
 <filter-name>UrlRewriteFilter</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>REQUEST</dispatcher>
 <dispatcher>FORWARD</dispatcher>
 </filter-mapping>
-->

Once you have uncomment the above lines, you should recompile the
Catalog webapp module and redeploy it into your Tomcat server.

You will find more information about this feature in the
Multi-Tenant section of our documentation.

Enable anonymous access to REST API

By default, anonymous access to REST API is disabled, e.g.
all requests to REST API must be identified with the
identity_key header.

Enabling anonymous access to the REST API means that only
authorized data of your Sentilo instance can be accessed.
Access to authorized data is described below.

In order to enable anonymous access you should modify the file
sentilo-platform/sentilo-platform-service/src/main/resources/properties/sentilo-platform.conf:

Properties to configure the anonymous access to Sentilo
sentilo.server.api.anonymous.enable=false
sentilo.server.api.anonymous.entity-id=

If anonymous access is enabled (sentilo.server.api.anonymous.enable=true),
then all anonymous requests to REST API are internally considered as is they have
been performed by the application client identified by the sentilo.server.api.anonymous.entity-id property
value (this application client should exist into your Sentilo Catalog),
and therefore these requests will have the same data restrictions as the
requests performed by this client application.

Enable Cluster Mode

Since version 2.0, Sentilo offers the possibility of configuring the instance
to work in cluster mode, thus favoring high availability (HA).

Since this mode substantially improves response times and overall performance
of all platform components, it is highly recommended to configure production
environments using this method.

Sentilo will improve its performance thanks to the particularity of the Redis
Cluster mode, which improves the response times of the stored data, as well as
a great improvement in its transmission, partly thanks to the use of Redis streams,
also introduced in the version 2.0.

Requirements

To activate the cluster mode or high availability of Sentilo it is necessary to
modify a specific parameterization that we will discuss below.

In addition, the use of the Redis cluster mode is mandatory.

If you want to have several instances of the API Server and/or the Catalog,
you must have a web balancer, such as NGINX, to be able to balance the
load of the servers

Configuration

Once we have all the requirements ready (especially the Redis Cluster mode),
we must make the following modifications in the Sentilo configuration:

	File sentilo.conf: configure the parameters associated with the Redis cluster
(sentilo.redis.cluster.nodes, see it at Default settings)

	For every Sentilo artifact startup scripts: add the JVM param -Dspring.profiles.active=cluster.

Once this is done, we can start our instance in high availability cluster mode normally.

What next?

Check the Quick Start Page or Platform
Testing page.

Quickstart

Prerequisites

You should have 4 components up & running:
- Redis Server
- MongoDB
- Sentilo API, running at http://127.0.0.1:8081
- Sentilo Catalog, running at http://127.0.0.1:8080/sentilo-catalog-web

The installation covered by the section Sentilo Setup.
(No need to setup any agents or other optional components such as Elasticsearch or OpenTSDB).
Alternatively, you can use our VM.

Create a Provider, Component and a Sensor

In order to create a publication of sensor data, we have to create first
the Provider, Component and a Sensor.

We’ll do that from the catalog application as admin user, using the
admin/1234 credentials.

A provider is an entity that manages devices (sensors). We’ll have to
create one from the menu “Providers” -> “New Provider”

A component is a device that contains one or more sensors (such as a
Raspberry PI). We’ll have to create one from the menu “Components” ->
“New Component”. Make sure you select the provider created above.

Finally, we’ll have to create a sensor from the menu “Sensors” -> “New
Sensor”. Make sure you select the component created above. Please select
a numeric type of sensor.

Publish an Observation

In order to publish an observation, we’ll use Sentilo’s HTTP REST API.
For that you can use the curl program of some more graphical tool such
as Postman [https://getpostman.com]:

curl -X PUT -H "IDENTITY_KEY: <your provider's token>" http://<your sentilo url>/data/<your provider>/<your sensor>/42.0

The server should respond with HTTP status 200.

Read your Observations

curl -X GET -H "IDENTITY_KEY: <YOUR_KEY>" http://<your sentilo url>/data/<your provider>/<your sensor>

The response would be similar to:

{
 "observations": [
 {
 "value": "42.0",
 "timestamp": "22/11/2016T11:52:28",
 "location": ""
 }
]
}

Also, on the “Latest Data” tab of the sensor’s page in the catalog will
appear your value, in this case, a 42.0.

What next?

Check the API documentation here.

API Docs

Contents:

	General Model

	Security

	Rate Limiting

	Monitor API (Beta)

	Services

The Application Programming Interface (API) of Sentilo defines a set of commands,
functions and protocols that must be followed by who wants to interact with the system externally.

This area defines the Application Programming Interface (API), that any sensor or application must use to interact
with the platform.

The starting capacities of the platform related to its external interface are:

	Allows to register applications/modules and providers/sensors in the platform (Catalog).

	Allow to applications/modules and sensors subscribe to services defined in the catalog as well as post events occurring (Publish/Subscribe).

	Allow you to send information from sensors to applications/modules (Data).

	Allows to send orders from applications/modules to sensors (Order).

Architecture

Sentilo is a platform aimed to isolate and communicate the applications
that are developed to exploit the information generated from the ground
by the layer of sensors deployed across to collect and broadcast this
information.

Its main modules are:

	Restful API

	Web Application which provides an administration console and some
public visualizers

	Data publication & subscription system

	A memory database for storing real time data

	A non-SQL database for storing less volatile data, like the sensor’s
catalog

	Several agents which extend the platform features

Key Concepts

This section describes the main concepts of Sentilo. Many of these
concepts are discussed later deeply.

You can read also some Technical FAQs.

PubSub Platform

Sentilo allows customers to publish and retrieve information and to
subscribe to system events. This module is a stand-alone Java process
that uses Redis as a publish/subscribe mechanism.

The different types of information considered are:

	observations

	alarms

	orders

Please, check this out fore more
info.

RealTime storage

Redis is the primary repository where the platform stores all the information
received. It is configured to do periodic backups in the file system. It
is also the Publish/Subscribe engine.

REST API

The client’s communication with publish/subscription mechanism is made
using the REST API provided by the platform.

Services offered by the API can be classified into five main groups:

	data: provides operations to publish, retrieve, delete data.

	order: provides operations to publish, retrieve, delete orders.

	alarm: provides operations to publish, retrieve, delete alarms.

	subscribe: provides operations to subscribe, retrieve and cancel
subscriptions.

	catalog: provides operations to insert, update, query and delete
catalog resources (sensors, components and alerts).

By default, the information is transmitted using JSON format. Please,
check this out fore more info.

Agents

Agents are Java processes that expand the core functionality of the
platform through a Plug & Play system using the Redis publish and
subscribe mechanism.

Sentilo currently provides several agents, for example:

	Relational database agent: used to export historical data to a
relational database.

	Alert agent: used for processing each data received by the
platform and validate it with the business rules configured in the
catalog.

	Activity Monitor Agent: used for upload the events to
Elasticsearch.

	Historian Agent: used for upload the events to OpenTSDB.

See the complete list here: Sentilo Agents

Authentication Token

The invocation of different REST API services is secured using an
authentication token. This token must be sent in every request as a
header parameter of the HTTP request named IDENTITY_KEY. This token is
unique for each provider or client application, and is managed by the
catalog application.

Please, check this out fore more info.

Permission

Permissions allow Sentilo to identify the requester and to ensure that
who makes a request is authorized to do it. Permissions are managed by
the catalog web app and allow to configure read or write permissions to
client application on third party resources (provider or client
applications). By default, every platform entity has read and write
permissions on its own resources.

Please, check this out fore more info.

Notification mechanism

Sentilo provides two mechanisms for notifying events:

	If the client is capable of having an opened socket, the platform
will send a notification to this socket every time an event is
triggered
(push).

	If the client cannot have an opened socket, then it must be doing
periodic requests (polling)
to the platform to retrieve last events.

Catalog

The Web Application Platform console allows to manage the following
resources: providers, applications, components, sensors, sensors types,
component types, alerts and users.

It also provides a public console for displaying components and sensors
registered in the platform as well as the data that has been received.

Please, check this out fore more info.

Alert

Sentilo allows to manage sensor-level internal alerts, aimed to control
the validity of the data received. The set of conditional operators
available are: >, >=, <, <=, =, any change, variation, frozen. When
the value received from a sensor doesn’t met any of the conditions
defined, the alert agent publishes an event (alarm) notifying it. These
alerts are defined through the console.
There are also external alerts which can be defined and triggered
externally though the
API.

Platform architecture

The following diagram describes the Sentilo platform:

[image: _images/arch1.jpg]

PubSub Server

PubSub Server is a stand-alone java application whose design is divided
into two layers:

[image: _images/arch2.jpg]

	Transport Layer: designed following the Thread Pool pattern:
http://en.wikipedia.org/wiki/Thread_pool_pattern

	Service Layer: Based in Spring and Redis, it’s designed to provide
high performance rates.

Transport Layer

The transport layer is designed following the Thread Pool pattern and
is implemented with Apache HttpCore library.

The following diagram shows the main flow for a request within this
layer:

[image: _images/arch3.jpg]

	The client sends a Http request to the REST platform

	The server accepts and queues it on the list of pending requests

	When a Worker is available, a pending task is assigned to it for
processing (removing it from the queue)

	delegates the request to an element of the service layer

	and constructs the HTTP response from the information received

	Send the response to client’s request

The values of the job queue and the workers’ pool are fully
configurable via properties file, for easily adjust to the load
requirements of each environment:

Properties to configure the pool of workers which handle incoming API requests.
sentilo.server.api.thread.pool.group-id=ApiRequestHandler
sentilo.server.api.thread.pool.group-name=API-Server
sentilo.server.api.thread.pool.queue-size=100
sentilo.server.api.thread.pool.keep-alive-seconds=60
sentilo.server.api.thread.pool.size.core=4
sentilo.server.api.thread.pool.size.max=10

Service Layer

The design of this layer has the main premise of minimizing the request
processing time, so all the main job is held in memory(Redis). Redis
stores data in a memory database but also has the possibility of disk
storage to ensure the durability of the data.

The following diagram shows the main flow for a request within this
layer:

[image: _images/arch4.jpg]
NOTE: (*) Executed asynchronously to the main process.

	The Worker delegates the request to the associated handler depending
on the type of request (data, order, alarm, …)

	The following validations are performed on each request:

	(2a) Integrity of credential: checks the received token sent
in the header using the internal database in memory containing all
active credentials in the system.

	(2b) Authorization to carry out the request: validate that the
requested action can be done according to the permission database.

	the validity of the request parameters: mainly, structure and
typology.

	After that:

	stores the data in Redis (in memory)

	and depending on the type of data

	(3a) publish the data through publish mechanism

	(3b) or register of the subscription in the
ListenerMessageContainer

	Redis is responsible for sending the published information to
ListenerMessageContainer event, who is responsible for managing the
subscription in Redis as a client for any type of event.

	The container notifies the event to each subscription associated with
it sending a request, via HttpCallback

The platform registers a task that runs periodically who is responsible
for credentials & permissions synchronization, stored in memory in
server (A). These data is retrieved from the catalog application. This
will maintain anytime an exact copy of these values in memory and
allows to check credentials and permissions instantly.

Finally, access to Redis is done through a connection pool fully
configurable through the sentilo.conf properties file, which allows you
to adjust to the specifics of each environment.

Pool properties
sentilo.redis.client.maxTotal=300
sentilo.redis.client.maxIdle=300
sentilo.redis.client.minIdle=10

Comments

	This design allows system scalability both vertically and
horizontally:

	vertically: increasing the boundaries of work queue & workers.

	horizontally: distributing the load across multiple instances or
server nodes.

	It also reduce response time because the process is carried out in
memory.

Catalog application

The catalog application platform is a web application built with Spring
on the server side (Spring MVC, Spring Security, ..) using jQuery and
bootstrap as presentation layer and MongoDB as data storage database.

This webapp consists of:

	a public console for displaying public data of components and sensors
and their data

	a secured part for resources management: providers, client apps,
sensors, components, alerts, permissions, …

It is fully integrated with the Publish/Subscribe platform for data
synchronization:

	permission and authentication data

	register statistical data and the latest data received for showing it
in different graphs of the Web application.

Integrations

Agents

Agents are internal modules oriented to expand its functionality without
having to alter its core. The installation is based on the principle of
Plug & Play: they are recognized by the system and started automatically
to be up and running.

Every agent is a process that acts as a subscriber for the
publish/subscribe platform. These processes will subscribe directly to
Redis as a independent clients. This subscription will provide the input
data to do the underlying business logic (store in a relational
database, process alarms, generate statistics, …)

The following diagram shows the design that every agent should follow:

[image: _images/arch6.jpg]

	When agent is started, it subscribes as client to Redis for the event
that wants to receive notifications.

	When Redis receives a publication of any of these data, the agent is
automatically notified with a new message.

	The message is processed and transferred to the corresponding agent’s
service responsible to carry out the underlying business logic.

Sentilo currently provides 7 agents:

	Relational database agent

	Alarm agent

	Activity Monitor agent

	Historian agent

	Federation agent

	Kafka agent

	Metrics Monitor Agent

Note

Agents use a base setting described under the sentilo.agent path, which
is defined in the sentilo.conf file,
and which can be overwritten by them in their own agent-xxx.conf file.

Relational database agent

This agent stores all information received from PubSub platform into a
relational database. It could be configured to filter the data to store
according to a business rules through a configuration file.

Configuration

Relational Database Agent is configured in the file:
sentilo-agent-relational/src/main/resources/properties/sentilo-agent-relational.conf.

	Property

	Description

	Comments

	subscriptions

	Regexp pattern on
event name that
enables
including/excluding
events

	Examples of configuration:

/alarm/*,/data/*,/order/*

Subscribes to all events

/data/PROVIDER1/*, /data/PROVIDER2/*

Subscribe only to data of 2 providers

Datasource

The dataSource is defined in the persitence context file:
sentilo-agent-relational/src/main/resources/spring/relational-persistence-context.xml.

<bean id="dataSource" class="org.apache.tomcat.jdbc.pool.DataSource" destroy-method="close">
 <property name="driverClassName" value="${sentilo.agent.relational.ds.jdbc.driverClassName}" />
 <property name="url" value="${sentilo.agent.relational.ds.url}" />
 <property name="username" value="${sentilo.agent.relational.ds.username}" />
 <property name="password" value="${sentilo.agent.relational.ds.password}" />
 <property name="initialSize" value="${sentilo.agent.relational.ds.initialSize:1}" />
 <property name="minIdle" value="${sentilo.agent.relational.ds.minIdle:1}" />
 <property name="maxIdle" value="${sentilo.agent.relational.ds.maxIdle:10}" />
 <property name="maxActive" value="${sentilo.agent.relational.ds.maxActive:10}" />
 <property name="maxWait" value="${sentilo.agent.relational.ds.maxWait:30000}" />
 <property name="testOnConnect" value="${sentilo.agent.relational.ds.testOnConnect:true}" />
 <property name="testOnBorrow" value="${sentilo.agent.relational.ds.testOnBorrow:true}" />
 <property name="testWhileIdle" value="${sentilo.agent.relational.ds.testWhileIdle:true}" />
 <property name="timeBetweenEvictionRunsMillis" value="${sentilo.agent.relational.ds.timeBetweenEvictionRunsMillis:10000}" />
 <property name="validationInterval" value="${sentilo.agent.relational.ds.validationInterval:30000}" />
 <property name="validationQuery" value="${sentilo.agent.relational.ds.validationQuery}" />
</bean>

and all its params can be configured in the .conf file.

Several database initialization files are located into the
sentilo-agent-relational/src/main/resources/db directory that you can use for your own database.

Alarm agent

This agent processes each internal alert defined in the catalog and
publish a notification (a.k.a. alarm) when any of the configured
integrity rules are not met.

Due to the type of available rules, this validation process integrity is
divided into two threads:

	An internal process that runs every minute, evaluates the status of
each sensor that have associated (frozen type) alerts.

	Additionally, each time a Redis notification is received, alerts
associated with the data received are evaluated.

Finally, an internal process regularly synchronize the alert list, to
synchronize the information stored in memory with the catalog
repository.

Activity Monitor agent

Background on Activity Monitor Agent

Sentilo is a publication-subscription platform. The amount of data held
in the system is proportional to Redis deployment and directly depends
on the amount of physical memory available for the Redis server. In
another words, the data has to be probably deleted after a certain
amount of time to free the Redis memory. For example, in the Barcelona
deployment, the data is deleted after approximately one week.

Additionally to data expiration, Sentilo does not provide many
dashboards and those dashboards are not customizable.

In order to fill the gap of historization and dashboards, we use
Elasticsearch [https://www.elastic.co/products/elasticsearch] and
Kibana [https://www.elastic.co/products/kibana]. Elasticsearch is a
powerful Java-based fulltext search database with REST API. It is
frequently used together with it’s modules, Kibana for dashboards and
Logstash for collecting of logs. The combination of Elasticsearch,
Logstash and Kibana is often called the ELK stack. ELK provides a
comfortable way to store and exploit historical information, and also a
near-realtime monitoring of the platform. Note that Elasticsearch
behaves excellently in cluster mode.

Sentilo events are uploaded to Elasticsearch through a Sentilo agent
called Activity Monitor Agent. The configuration of this agent is
described further in this chapter.

The following image illustrates a possible setup of Sentilo with ELK
stack. Logstash is optional and can be used e.g. for monitoring of
Sentilo logs (like login errors, invalid messages etc.), as well as
monitoring of system resources.

[image: _images/sentilo_monitoring_deployment.png]
The setup of the ELK stack is well documented and beyond the scope of
this page.

Configuration

Activity Monitor Agent is configured in the file:
sentilo/sentilo-agent-activity-monitor/src/main/resources/properties/sentilo-agent-activity-monitor.conf.

	Property

	Description

	Comments

	subscriptions

	Regexp pattern on
event name that
enables
including/excluding
events

	Examples of configuration:

/alarm/*,/data/*,/order/*

Subscribes to all events

/data/PROVIDER1/*, /data/PROVIDER2/*

Subscribe only to data of 2 providers

	elasticsearch.url

	URL of the ES
instance

	

The agent will create index(es) called sentilo-YYYY-MM.

Configuration of Elasticsearch, Logstash and Kibana is beyond the scope
of this document and can be easily followed on their respective web
pages.

Compatible versions

Sentilo has been successfully used in with these versions of ELK (which
does not mean other versions shouldn’t work as well):

	ELK 5+

Historian agent

Background on Historian Agent

As you already might have learned, Sentilo does not persist data forever
because of limited system resources.

Commonly used setup of a Sentilo instance is to employ one of the agents
to copy the data into some external database or storage.

Since the data volumes can be fairly big and the data are mostly
structured (except when the observations are text), it is convenient to
use a scalable solution for time series such as
OpenTSDB [http://opentsdb.net/].

OpenTSDB installs of top of HBase and HDFS. Exposes a HTTP REST API and
can be used from Grafana [http://grafana.org/] as one of it’s
data sources.

Configuration

Historian Agent is configured in the file:
sentilo/sentilo-agent-historian/src/main/resources/properties/sentilo-agent-hitorian-opentsdb.conf.

	Property

	Description

	Comments

	subscriptions

	Regexp pattern on
event name that
enables
including/excluding
events

	Examples of configuration

/alarm/*,/data/*,/order/*

Subscribes to all events

/data/PROVIDER1/*,/data/PROVIDER2/*

Subscribes only to
data of 2 providers

	opentsdb.url

	URL of the OpenTSDB
instance

	

	metrics.fromSensorType

	Change the metrics
name by using sensor
type

	If set to true, metric name will have
for of i.e. data.sensorType, otherwise
metric name will result in data.providerName.sensorName

	metrics.usePublishedAtTimestamp

	URL of the OpenTSDB
instance

	If set to true, OpenTSDB’s datapoint will have the
timestamp of the ‘publishedAt’ property of the event,
otherwise, the datapoint will use the ‘time’ property
of the event message

Configuration of HDFS, HBase, OpenTSDB and is beyond the scope of this
document and can be easily followed on their respective web pages.

Compatible versions

Sentilo has been successfully used in with these versions:

	Hadoop 2.7.2

	HBase 1.2.1

	Opentsdb 2.2.0, 2.3.0

	Grafana 3 +

Federation agent

Description

The federation agent is a module that permits to share events between two independent instances of Sentilo.
The sharing is unilateral - one Sentilo instance is emitting events and the other is receiving.
The agent is installed at the side of the receiving instance:

[image: _images/sentilo_federation.png]
The administrator of the emitting Sentilo instance only needs to create a new application and provide the token the
administrator of the receiving instance.
As with any Sentilo application, the administrator is in control of which provider’s data are readable by the remote federation agent.

Providers, components and sensors are created automatically in the catalog of the receiving instance by the federation agent.
The agent uses its application token to query the emitting catalog API to obtain remote objects, and uses the local catalog
application id to replicate the locally.

The federation agent creates subscriptions on data it has permission. It creates a HTTP endpoint and tells the emitting instance
to forward the events to this endpoint URL.

Configuration

Federation Agent’s configuration is in file
sentilo/sentilo-agent-federation/src/main/resources/properties/sentilo-agent-federation.conf.

	Property

	Default Value

	Description

	server.port

	8082

	Agent’s HTTP port

	sentilo.agent.federation.api_server.local.endpoint

	http://127.0.0.1:8081

	Endpoint of the local API Server instance

	federation.subscription.endpoint

	http://localhost:8082/data/federated/

	Agent URL that will be used in subscriptions in the remote Sentilo instance.

	federation.subscription.secret.key.callback

	secret-callback-key-change-it

	HMAC secret used for incoming subscription.

	federation.subscription.max.retries

	3

	Number of retries used for subscription

	federation.subscription.max.delay

	5

	Delay used for subscription

Further configuration of the agent is available in the “Federation services” menu.

The menu is available when running Tomcat with the option:

-Dsentilo.federation.enabled=true

The “Client application token” input is the token created in the emitting Sentilo instance:

[image: _images/catalog-federation-config.png]

Kafka agent

Description

The Kafka agent publishes Sentilo events to Kafka.

Configuration

Kafka Agent’s configuration is in file
sentilo/sentilo-agent-kafka/src/main/resources/properties/sentilo-agent-kafka.conf.

	Property

	Default Value

	Description

	kafka.bootstrap.servers

	localhost:9092

	Comma-separated list of Kafka brokers

	zookeeper.nodes

	localhost:2181

	Comma-separated list of Zookeeper nodes

	kafka.request.timeout.ms

	30000

	

	kafka.linger.ms

	100

	Milliseconds before the contents of buffer are sent or until batch fills up, whichever comes first.

	kafka.batch.size

	20000

	Number of bytes of internal buffer. If the size fills up before , contents are sent to Kafka, .

Otherwise contents are sent once kafka.linger.ms passed.

	sentilo.agent.kafka.topic.prefix

	sentilo

	Topics in Kafka will start with following prefix. May be left blank

	sentilo.agent.kafka.topic.separator

	.

	The compound name of topic in Kafka will be separated with this string.

	sentilo.agent.kafka.topic.nameMode

	topicPerSensor

	Possible values of topicNameMode for the “data” event type:
* topicPerSensor: sentilo.data.providerName.sensorName
* topicPerProvider: sentilo.data.providerName
* topicPerSensorType: sentilo.data.temperature
* topicPerMessageType: sentilo.data
* singleTopic: sentilo

	subscriptions

	Regexp pattern on
event name that
enables
including/excluding
events

	Examples of configuration

/alarm/*,/data/*,/order/*

Subscribes to all events

/data/PROVIDER1/*,/data/PROVIDER2/*

Subscribes only to
data of 2 providers

Compatible versions

Sentilo has been successfully used in with these versions:

	Kafka 0.11.0

	Kafka 0.10.2

Metrics Monitor Agent

The agent persists internal Sentilo metrics, such as memory usage or number of threads and persists them in Elasticsearch.

Elasticsearch template definition for this agent is located in
/sentilo-agent-metrics-monitor/src/main/resources/elasticsearch.
The template name is sentilo-metrics and the index pattern created by the agent is sentilo-metrics*.

The configuration /sentilo/sentilo-agent-metrics-monitor/src/main/resources/properties/sentilo-agent-metrics.conf
and it’s same as for the Activity Monitor Agent. Example configuration:

Endpoint for elasticsearch
elasticsearch.url=http://localhost:9200

Properties to configure the index process
sentilo.agent.batch.size=1

Clients

Node-red

Node-RED [https://nodered.org] is a visual programming platform ideal for non-complex integrations and prototyping.

Sentilo plugin is available in Node-RED’s marketplace.

Simply search for “sentilo” in Palette configuration:

[image: _images/sentilo-nodered-installation.png]
Following nodes should appear in the nodes palette:

[image: _images/sentilo-nodered.png]
Now, you should be able to use Sentilo from Node-RED. For example:

[image: _images/sentilo-nodered2.png]
The package contains documentation on how to use Sentilo nodes.
More info at the `Sentilo library page at Node-RED website https://flows.nodered.org/node/node-red-contrib-sentilo`__.

NodeJS

[image: _images/node-js.png]
 [https://github.com/sentilo/sentilo-client-nodejs]We provide a Node.js [https://nodejs.org/es/] client library that facilitate access to the Sentilo API. The library is no yet a npm package,
but you can still use easily. Lastest version of this library is tested with Node 10 and 12.

More information is in this repository: https://github.com/sentilo/sentilo-client-nodejs

There is also a tutorial on how to use this library with Raspberry Pi and GPIO with javascript.

Java Client

[image: _images/java_logo.jpg]
Sentilo platform includes a Maven artifact sentilo-platform-client-java.
Its source code is here [https://github.com/sentilo/sentilo/tree/master/sentilo-platform-client-java].
This library is used internally by Sentilo and its agents.

You can check the tutorial of `how to create creating sample web application /tutorials/java_client_tutorial.html`__.
The example uses Spring MVC and can be deployed on a Tomcat.
The code of this tutorial is available at https://github.com/sentilo/sentilo-client-sample-java .

Regardless of the example, the library can be used in any Java application.
Its dependencies are tiny and is framework-agnostic.

Arduino

[image: _images/arduino.png]
 [https://github.com/sentilo/sentilo-client-arduino]Arduino client HTTP Request library is available here: https://github.com/sentilo/sentilo-client-arduino

There’s also a tutorial on Arduino with Sentilo.
The source code for the tutorial is available here: https://github.com/sentilo/sentilo-client-arduino

Cloud

AWS S3

The AWS S3 [https://aws.amazon.com/s3/] can be used together with Sentilo, if your solution needs
to upload files such as audio snippets, images or files in general.

Sensor can publish links to multimedia files. If these links are always public, catalog will preview them without any additional configuration.

If these media links are private and managed by S3, catalog needs these properties in the file sentilo-catalog.conf:

Note

Sentilo is is currently using path-style API requests.

Note

Sentilo is probably compatible with variety of S3-like platforms on the market that implement the S3 interface.

In the end, you will be able to visualize private links in S3, for example:

[image: _images/catalog-s3-audio-preview.png]

Catalog and Maps

The Catalog is a web application that enables you to administer, rule
and monitor the Sentilo platform resources and activity. In this section,
you will learn how to manage Sentilo resources and how to monitor its activity.

Contents:

	Map Viewers

	Administration console

	Statistics page

Multi Tenant

Introduction

The Multi Tenant feature provides the capacity of
creating and managing virtual Sentilo instances related with different
organizations(e.g. cities). Every organization has its own context,
entities and data, and it can share information with third parties at
its will, even it’s possible to have different look & feel for every
tenant.

Above all the tenants, a new role emerges for administer the platform,
manage the organizations and create the necessary users for administer
each one. Additionally, the platform can provide additional services to
its organizations, like common integrations and offer a single map
showing the public information of all its organization.

The Sentilo multi-tenancy model implements level 3 of SAAS maturity
model, which offers a good levels of efficiency and scalability balanced
with a complexity and a reasonable operational costs:

	Single instance for all the tenants.

	Same software deployed version for all the entities.

	Unique typologies for components and sensors.

	Common data repositories for all the tenants.

	Personalization and access control for entities through admin
console.

	Personalization of look & feel for tenants.

	Delegated administration for each entity, allowing them to administer
its own data, devices, users and to share data a their will.

After configuring it, every organization has its own virtual Sentilo
instance and can be administered autonomously.

The Organization concept

The Organizations represent the different entities, usually cities, that
owns a virtual Sentilo instance. Every one can manage autonomously its
own applications, providers, components and sensors. All these elements
are property of the organization, and nobody outside the organization
can access to them, unless the organization grants access permissions to
other organizations.

Organizations are administered through the various existing user roles,
and according to them, be managed in different ways:

	Role

	Access type

	Super Admin

	The Super Admin user can create
and administer organizations,
users and typologies

	Admin

	The Admin user can only manage
its own organization parameters
and has capacity for creating his
own users, applications,
providers, components, sensors
and alerts, which will be
automatically related to its
organization

	User

	The User can only access to
public information data about the
applications, providers,
components, sensors and alerts
which belong to its own
organization

Below you can see an organization list from a multi tenant Sentilo
instance, when connecting as super admin user:

[image: _images/organizations_list.png]

Sentilo contexts

There are several virtual contexts(URL paths) for a multi tenant Sentilo
instance, one for every organization and one for the public common area.
It’s important to remark that for accessing to each organization
console, you should choose the correct path, otherwise you won’t be able
to access, even using correct credentials.

Organization console

You should access to the administration console through the
corresponding url address, adding the organization id as a last
parameter, as follows.

http://sentilo_instance_host[:port]/sentilo-catalog-web/organizationId

In the parameter organizationId you should inform the organization
identifier where you want access to. For example, we could access to an
organization named Sample Organization, with a
sample_organization as organization identifier in a Sentilo instance
deployed in a host with name example.com:

http://example.com/sentilo-catalog-web/sample_organization

Platform console

Super Admin users should access to the catalog console without
informing any organization identifier in the url. In this case, no data
is filtered by organization, and all the public information is visible
in the public map and statistics:

http://your_sentilo_server_ip/sentilo-catalog-web

Super Admin users are responsible of configuring the platform
organizations and its users, and also to define the component and sensor
typologies.

Anonymous access

Anonymous users(not logged) can access the universal viewer directly
without informing organization in the url. In this case, no data is
filtered by organization, and all public information is displayed in the
public maps and statistics, using the platform common look & feel.

http://sentilo_instance_host[:port]/sentilo-catalog-web

In this case, the user will see all the public information provided for
the instance organizations.

Alternatively, the users can access to a specific organization public
information, specifying a different URL context:

http://sentilo_instance_host[:port]/sentilo-catalog-web/organizationId

For example, we could access to an organization named Sample
Organization, with a sample_organization as organization
identifier in a Sentilo instance deployed in a host with name
example.com:

http://example.com/sentilo-catalog-web/sample_organization

Then the user will see all the public data offered by the Sample
Organization, displayed using the organization custom look & feel.

For the rest of it, the features and behaviour of the public area is the
same as described in Catalog and Maps section.

Platform administration

Super Admin users are responsible of configuring the platform
organizations and its users, and also to define the component and sensor
typologies. They cannot see any organization data, such as components,
sensors, alerts.

Organization administration

List

Only the Super Admin user can list, create and delete
organizations. After the organization is created, an Admin user can
edit its own configuration settings. User role don’t have access to
this information.

[image: _images/organizations_list.png]

Details

Below, the organization creation form, as a Super Admin:

[image: _images/organization_create.png]
In order to create an organization, we must inform, at least, these
parameters:

	identifier: an unique organization identifier

	name: the organization name

	contact name: the name of the responsible person

	contact email: the email of the responsible person

Some other parameters are optional:

	description: some description about the organization

Config params

There are some additional parameters for customizing the public &
private behavior.

[image: _images/organization_create_config_params.png]

Visual configuration

These params will apply to the entire catalog application visual
customization, and how the user will see the data. Note that time zone &
date format are directly relationated.

	Property

	Description

	Comments

	Time zone

	Defines the time zone
of the organization,
and modifies the way
to display data on
screen, such as dates

	You can define hourly
difference or time
zone abbreviations:
CET, UTC, +001…

	Date format

	Defines the date
format with which the
data will be
displayed in the
application (lists,
details…)

	Example: dd/MM/yyyy
HH:mm:ss = 30/11/2017
15:34:56
See all possible
formats as Java Date
Format, at: Java
Date Format [https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html]

	Chart values number

	Number of
observations
displayed on chart

	It must be a positive
integer number
greater or equals to
10. If blank, it will
be a default value of
10.
This value will be
overwritten by
sensor’s
configuration one.

Map configuration

These params configure the universal map visualization.

	Property

	Description

	Comments

	Zoom level

	Zoom level of the
universal map

	Default value is 14.
And you can define a
value between 1 and
20.
See possible values
in:
https://developers.go
ogle.com/maps/documen
tation/static-maps/in
tro#Zoomlevels

	Latitude / Longitude

	Defines the map
center in latitude &
longitude values
format

	

	Map background color

	Define the background
color of the map

	Possible values
applies with the
colorpicker, or input
a valid css / html
color value

Users administration

The Super Admin user can create, edit and delete any user from any
Organization whatever role they have. In Addition, Super Admin role is
the unique user role that can create additional Super Admin users.

In a multi tenant instance, except for Super Admin users, when creating
users, it’s mandatory to specify the related organization.

List

[image: _images/users_list1.png]

New user

Details

The next image shows how the new user’s form is:

[image: _images/user_create.png]
Alternatively, we can inform some configuration params that will modify
the catalog visualization for this user:

[image: _images/user_create_config_params.png]
These params will apply to the entire catalog application visual
customization, and how the user will see the data. Note that time zone &
date format are directly relationated.

	Property

	Description

	Comments

	Time zone

	Defines the time zone
of the user, and
modifies the way to
display data on
screen, such as dates

	You can define hourly
difference or time
zone abbreviations:
CET, UTC, +001…
Example: dd/MM/yyyy
HH:mm:ss = 30/11/2017
15:34:56*
Note that this value
overrides the
organization’s one,
if informed*

	Date format

	Defines the date
format with which the
data will be
displayed in the
application (lists,
details…)

	See all possible
formats as Java Date
Format, at: Java
Date Format [https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html]
Note that this value
overrides the
organization’s one,
if informed

Component and Sensor types administration

Only the Super Admin user can administer the components and sensor
types. In this case, the behaviour is the same like for a normal Sentilo
instance.

See more information about it in the Catalog and Maps section.

Tenant administration

Admin role users are directly related with an specific organization.
They are the only ones who are able to administer the organization
private data, such as its providers, applications, components, sensors
and alarms. They can also manage its own users. The admin users will
also be capable of seeing all the defined component and sensor
typologies, but they wont be able to modify them.

Basically, the only difference between the simple Sentilo instance and a
Multi Tenant instance version is that only users from one organization
can see and access to information from its own organization. It’s also
possible to share information with another organizations, as described
later. This data isolation make possible taking advantage of user and
organization hierarchy.

Below, we review the specific behaviour of tenant administration,
remarking is specificities. For more information, you can read the
Catalog and Maps section section.

Organization administration

Admin users can only manage its own organization information.

[image: _images/organization_admin.png]
Alternatively, Admin user can manage their config params and third party
from/to permissions for sharing information purposes. You’ll find them
in the two last tabs that located in the top of the detail section.

Permission administration

Permissions list

[image: _images/organization_permissions_to_others.png]

Adding permissions

Adding to third party read & write permission:

[image: _images/organization_permissions_add.png]
Response upon permission has been created:

[image: _images/organization_permission_added.png]
In this case we had granted read&write permissions from our
organization and our provider sample_provider to third party
organization named Sentilo. So, now the Sentilo organization can
access to the sample_provider data and manage it (publish data).

In the other side, the Sentilo organization can see these permissions in
the second tab, Permissions from others:

[image: _images/organization_permissions_from_others.png]
And now, from this tab, we can
change the permission visibility on the map. Simply select the checkbox
from the permission and click on Show in map or Hide in map.

When sharing providers with other organizations, their related
entities(providers, components, sensors), will appear on the other
tenant console, but only in read mode.

Tenant resources administration: unique identifiers

Resources related to a tenant, such like providers and applications,
must have unique identifier into a Sentilo instance. But, in a multi
tenant instance, it is possible to repeat it identifier, based on its
tenant. So tenant resources are completely independent between their
tenants.

Multi tenant instances offers to the user a little visual difference.
You will inform the resource identified with its own tenant identifier
as prefix.

It is transparent for users, but in administration console you’ll see a
flag that informs you that you’re in a multi tenant instance:
sentilo@the_identifier, is related to an identifier from Sentilo
tenant organization

Applications

For application creation form you’ll see this in the Identifier field:

[image: _images/application_create.png]
In this case, we’re creating a application
named My Application with identifier sentilo@myapp_identifier.

Providers

For the providers, we would be facing the same case as for the
Applications. Therefore, you can choose the desired identifier,
regardless of the tenant you are managing.

[image: _images/provider_create.png]
In this case, we’re creating a provider named My Provider, with
identifier sentilo@myprovider_identifier.

Tutorials

Contents:

	Java Client Tutorial

	RaspberryPi Client

	Arduino Tutorial

On this page you will find several tutorials about how to connect to
Sentilo using various existing platforms and languages.

[image: spring-framework.png]

Java library that allows
access to Sentilo Platform
through its REST API Client

[image: raspberrypi.jpeg]

Independent platform library
created with NodeJS that allows
embedded architectures, such as
Raspberry Pi, to communicate with
Sentilo Platform through its REST
API Client

[image: arduino-mega-2560-r3.jpg]

A simple Arduino library that
allows connect with the Official
Ethernet Shield to the Sentilo
Platform

Technical FAQ

In which platforms has been Sentilo tested ?

The first deployment for the Barcelona City Council has
the following infrastructure:

	Four virtual machines, two for the front-ends and another two for the
back-end

	All of them use as operating system Ubuntu server LTS 18.04

	The real time database server(Redis) works with 32 GB of memory and
36 GB of hard disk

	The other three servers work with 4 GB of memory and 16 GB of hard
disk

Another deployment configurations should work properly, always keeping in
mind the expected load by the system.

All known Sentilo instances are deployed on Linux servers, mainly CentoOS 6+
and Ubuntu Server 14.04+.

I successfully published an observation, but I cannot see the data in catalog.

Check that the Catalog and Sentilo API Server are in the same timezone,
for example in UTC. Make sure the sentilo-server is executed with the
following VM option:

-Duser.timezone=UTC

Also, make sure that the Tomcat that hosts the Catalog application has
the same option, for example en $JAVA_OPTS variable.

Google Maps is not showing up in Catalog application

Recently Google changed it policy regarding Maps key. Please go to
https://developers.google.com/maps/documentation/javascript/get-api-key
and create one.

You can define the API key inside the /etc/sentilo/sentilo-catalog.conf configuration file:

Google API key to use Google Maps
sentilo.catalog.map.google.key=<your key>

Remember you’ll have to restart tomcat in order to let sentilo-catalog-web.war reload these changes.

I created a provider and immediately after that, an observation using the new provider’s token is rejected with 401 “Invalid credential”

The providers are activated in a background job that runs every 5
minutes. Please wait a moment :-)

Another possible reason is that the Sentilo API server started before the Catalog application (probably deployed on your Tomcat).

At startup, the API server performs a call to:

/sentilo-catalog-web/api/entities/permissions

in order to mirror the permissions stored in MongoDB with Redis.

If this call fails because the sentilo-catalog-web is not deployed yet, the permissions are not correctly created.
To resolve the issue, reboot your Sentilo and ensure that the API server starts always after the sentilo-catalog-web is fully deployed.

The command mvn package appassembler:assemble fails.

You have to execute the command in the directory of the component you
want to install.

I think I installed Sentilo. How can I confirm all is up & running?.

You can use this script:

./scripts/testServerStatus.sh

You also might want to check Platform
Testing

If you installed everything on your local machine, you can access the
catalog at http://localhost:8080/sentilo-catalog-web and the REST API at
http://localhost:8081

How can I activate debug logs?

You can pass the property sentilo.log.level to the JVM.
For example, you might add the following code to the script in the bin directory
of the component you want to debug:

-Dsentilo.log.level=DEBUG

Platform Testing

To check everything is properly configured and running, you can run the
following set of tests.

Infrastructure servers test

Status page

To validate that all services are up and running (Redis, MongoDB and
PubSub), you can access to the following catalog page:

http://ip:port/sentilo-catalog-web/status/

[image: _images/status_001.png]
In this screen you can check the status independently for each Sentilo
main service. In each case it will be indicated, through a green status
message, the correct operation of the same. In the event either it is
not possible to connect to the service or there is an error, an error
message will be displayed .

Next screenshot shows to you an error connecting to the API:

[image: _images/status_002.png]

Deactivating the status page

By default, the status page is enabled in your Sentilo instance.

To disable it, you must provide a JVM Tomcat parameter:

-Dsentilo.state_page.enabled=false

Then, the status page will be inaccessible:

[image: _images/status_003.png]

Postman tests

To test the API REST services individually, you can also test end-end
functionality with Postman [https://www.getpostman.com], or if you
prefer CLI, via
Newsman [https://www.getpostman.com/docs/postman/collection_runs/command_line_integration_with_newman]:

newman run postman-script.json -e postman-script-env.json --delay-request 5000 --reporters cli,json --reporter-json-export outputfile.json

where files postman-script.json and postman-script-env.json are
located in subdirectory
scripts/test [https://github.com/sentilo/sentilo/tree/master/scripts/test]
from your local copy of Sentilo.

This script provides tests all Sentilo REST API resources and can serve
you also as example of the API usage.

Note

Before executing tests with newman, you should review the values of the variables
api_url, api_port, provider and provider_token in the environment file postman-script-env.json
so that they match your Sentilo instance

Before executing the postman script / or you should replace default values (extracted from the init_test_data.js file)
with the ones that you want to use to execute it (api_url, api_port, provider and provider_token)

Sentilo Official Docker Images

Since version 2.0.0, the official docker images of each of the platform modules
have been made available to the community.

These images can be downloaded from the Docker Hub library at: https://hub.docker.com/u/sentilo

From there you’ll can pull and create your own Sentilo containers as needed.

Available Sentilo official docker images

	sentilo/agent-activity-monitor

	sentilo/agent-alert

	sentilo/agent-federation

	sentilo/agent-historian

	sentilo/agent-kafka

	sentilo/agent-location-update

	sentilo/agent-metrics-monitor

	sentilo/agent-relational

	sentilo/catalog-web

	sentilo/platform-server

Sentilo platform as multi-container Docker applications

Alternatively, a Docker Compose image script has been created that creates a basic Sentilo
instance with the necessary services to be able to test them from our desired development environment.

You can download the project from: https://github.com/sentilo/docker

Available Sentilo services:

	Sentilo Platform Server (REST API)

	Sentilo Alert Agent

	Sentilo Location Updater Agent

	Sentilo Catalog (web application)

Also available external services (non Sentilo official images):

	Redis

	MongoDB

All the necessary documentation is available at the README.md file from the project.

Once all the services have been started, with the proposed default configuration, and with Docker
running in our local environment, we can access the platform through the following urls:

	
	Sentilo Catalog Web Application:

	
	URL: http://localhost:8080/sentilo-catalog-web

	credentials: admin/1234

	
	Sentilo API Rest endpoint:

	
	URL: http://localhost:8081

All your conf files and logs will be available at local directories as data volumes:

	./logs

	./conf

Index

 _images/active_subscriptions_list.png

_images/alerts_creation_rules_list.png

_images/alerts_list.png

_images/alert_external_create.png

_images/alert_internal_create.png

_images/alerts_list_filtered.png

_images/alerts_massive_creation.png

_images/alerts_massive_creation_confirm.png

_images/application_details.png

_images/application_details_as_user.png

_images/application_active_subscriptions_tab.png

_images/application_create.png

_images/arch1.jpg

_images/application_permissions_tab.png

_images/applications_list.png

